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Abstract—Edge caching has been widely implemented to ef-
ficiently serve data requests from end users. Numerous edge
caching policies have been proposed to adaptively update the
cache contents based on various statistics. One critical statistic
is the miss cost, which could measure the latency or the band-
width/energy consumption to resolve the cache miss. Existing
caching policies typically assume that the miss cost for each
data item is fixed and known. However, in real systems, they
could be random with unknown statistics. A promising approach
would be to use online learning to estimate the unknown statistics
of these random costs, and make caching decisions adaptively.
Unfortunately, conventional learning techniques cannot be di-
rectly applied, because the caching problem has additional cache
capacity and cache update constraints that are not covered in
traditional learning settings. In this work, we resolve these issues
by developing a novel edge caching policy that learns uncertain
miss costs efficiently, and is shown to be asymptotically optimal.
We first derive an asymptotic lower bound on the achievable
regret. We then design a Kullback-Leibler lower confidence
bound (KL-LCB) based edge caching policy, which adaptively
learns the random miss costs by following the “optimism in the
face of uncertainty” principle. By employing a novel analysis that
accounts for the new constraints and the dynamics of the setting,
we prove that the regret of the proposed policy matches the
regret lower bound, thus showing asymptotic optimality. Further,
via numerical experiments we demonstrate the performance
improvements of our policy over natural benchmarks.

I. INTRODUCTION

Edge caching has been widely implemented to store data
items closer to end users and accelerate data access. It is
reported that about 50% photo traffic on Facebook are served
by geographically distributed edge caches [1]. Edge caches
typically have limited capacity and can only accommodate a
small fraction of the entire dataset. When the requested data
item is not stored in the edge cache, we call it a cache miss
and the data item has to be fetched from the backend data
storage to serve the request, which will incur a large delay
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and consume more bandwidth or power resources. A critical
question for caching design is which data items should be
stored in the edge cache?

Numerous caching policies have been designed to update
the cache content based on different data statistics. One critical
statistic is the miss cost, i.e., the cost to fetch the requested
data from other storage when it is not stored in the edge
cache. The miss cost is a general concept depending on
the specific application (e.g., the cost could represent the
latency or bandwidth/energy consumption required to fetch
the missed data from backend). Intuitively, we should cache
data items that may potentially incur larger miss costs, so
that the expected cost to serve the request is minimized. By
following this principle, various caching policies have been
proposed [2], [3], [4], [5], [6]. However, almost all of them
assume that the miss costs are fixed and known, which is
not the case in real systems. The miss cost of a data item
could be random with unknown statistics in real systems.
For example, the miss cost may depend on the geographic
locations of the backend storage that sends the missed data
back, communication environments, network traffic flows, etc.
Existing caching policies cannot satisfactorily handle such
uncertainty. To fill this gap, we develop new edge caching
policies that learn the unknown statistics of the random miss
costs adaptively and efficiently.

A promising approach is to use online learning to estimate
these unknown statistics of miss costs. However, existing
online learning approaches cannot be directly applied due to
the following reasons. 1) The learning actions and the caching
decisions are correlated and should be jointly optimized.
Specifically, we can observe samples for the uncertain miss
costs, only when the corresponding data item is not stored in
the edge cache. 2) Caching problems have additional cache
capacity and content update constraints that are not covered
in the traditional online learning settings. For example, the
cache contents in the next time slot will remain the same
as the current one, if there are no cache updates, which
naturally introduces time correlations. Due to the dependency
between learning and caching decisions, such time correlations
will exist in the action sets of the learning process. These
constraints make the problem highly non-trivial. We show in
Section III that a heuristic design could almost always make
wrong caching decisions and achieves poor performance.

We address these challenges by designing a novel edge
caching policy that learns the unknown statistics of miss
costs efficiently. In particular, we first characterize the best
achievable caching performance by establishing a regret lower
bound. Inspired by the “optimism in the face of uncertainty”
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principle in learning literature [7], [8], we then propose a novel
KL-LCB based edge caching policy that adaptively learns
the unknown statistics of the miss costs. In order to analyze
the theoretical performance of the proposed policy, we are
required to prove almost-sure convergence results for critical
caching statistics, which are not covered by traditional online
learning analysis. Based on these new results, we prove that
the proposed policy achieves the regret lower bound, and is
therefore asymptotically optimal. Our key contributions are
summarized as follows.

• We reveal the non-triviality of learning miss costs in
caching systems. We introduce a heuristic learning design
and carefully explain that it could achieve significant
inefficiency (see Section III).

• We derive a regret lower bound for any “good” polices
(see Section IV), and develop an asymptotically optimal
KL-LCB based edge caching policy that achieves this
regret lower bound (see Section V). The analysis for the
proposed policy employs novel ideas to deal with the new
constraints and dynamics in caching systems, and could
be potentially leveraged to analyze learning mechanisms
for other systems.

• We conduct extensive numerical experiments to evaluate
the proposed KL-LCB based edge caching policy, and
compare it with a few benchmarks. It is shown that the
proposed policy achieves significantly better performance
than the other benchmarks (see Section VII).

Related Works: Cost-based caching policies have been ex-
tensively studied. The GreedyDual policy evicts the data item
with the smallest miss cost when the cache is full [5]. Different
designs have been proposed to implement the Greedy-Dual
policy [4], [3]. The GreedyDual-Size policy considers data
items with different sizes and uses costs per unit data size as a
critical factor for caching update [9]. It is further generalized
as the Greedy-Dual-Size-Frequency (GDSF) policy to make
caching decisions based on the joint effect of data frequency,
sizes and costs [2]. Specifically, the GDSF policy attempts to
cache the data items with large frequency × cost / size values.
In [6], Hyperbolic caching is proposed to provide flexible
caching service for web applications, and is implemented in
real systems such as Redis and Django. It prioritizes data items
based on a general function that could depend on miss costs,
expiration times, windowing, etc. Other factors (e.g., freshness,
latency) are also considered in cost-based policies designed for
a variety of applications [10], [11], [12]. Notably, these works
assume that the miss costs are known. For unknown miss
costs, efficient cost-learning mechanisms jointly optimized
with caching decisions are needed.

Leveraging online learning techniques to improve caching
performance has received more and more attention. However,
most of the existing works in this area focus on learning
unknown data popularities or user preference [13], [14], [15],
[16], [17], [18]. Learning data popularities has different con-
straints and dynamics from learning miss costs. And therefore,
these approaches cannot be extended to directly solve the cost-
learning problem. In [19], fetching costs are considered for
caching at small base stations. The paper first assumes known

cost distributions and develop efficient algorithms to solve the
cost minimization problem. Then, unknown cost distributions
are considered and a Q-learning based approach is proposed
to estimate the unknown cost distributions. However, no the-
oretical performance guarantee is provided for this approach.

We also note that edge caches are typically connected with
end users through wireless channels. The unreliability and
broadcasting capability of wireless channels have introduced
challenges as well as opportunities for edge caching optimiza-
tion [20], [21], [22], [23], [24], [25], [26]. However, in this
paper, we do not consider such dynamics of wireless channels,
which deserves a deep dive in future research.

II. PROBLEM FORMULATION

In this section, we first introduce the system model for
edge caching with uncertain miss costs. Next, we formulate
a service cost minimization problem for solving the optimal
edge caching policy. We then define the regret to measure the
performance of an edge caching policy.

A. System Model

Consider an edge caching scenario as illustrated in Fig. 1.
Edge caches are placed at the network edges (e.g., on base
stations) and are the closest to the end users. Edge caches have
very limited cache capacity and can only store a small fraction
of the entire dataset. The backend data centers are in the core
of the network and stores the entire dataset. On the route from
the edge to the backend data center, some intermediate nodes
may have caching capabilities, which store part of the dataset
and are closer to the network edge than the data center. The
considered storage architecture is commonly used in today’s
content delivery networks [1]. In this paper, we focus on a
single edge cache and investigate how to develop an optimal
content update policy for it.

Fig. 1: Edge caching with disparate service costs.

We consider a discrete-time system with time t = 1, 2, · · · .
Let D = {d1, d2, · · · , dN} be a set of N data items, where the
item sizes are assumed to be 11. Let K be the capacity of the
edge cache, 1 ≤ K < N . At each time slot t, a data request is
generated and sent to the edge cache. Let Rt denote the data
item that is requested at time t, Rt ∈ D. We characterize Rt by

1In Section VI-A, we will discuss how to generalize our main results to
allow for non-identical data sizes.
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the independent reference model (IRM), which is commonly
assumed in caching analysis [27], [28]. Specifically, the data
requests are independently generated based on the unknown
popularity pi

∆
= P[Rt = di], with pi ∈ (0, 1) and

∑N
i=1 pi = 1.

Once a data request is received, we will first try to serve the
request from the edge cache. If the requested data is stored
in the edge cache (i.e., a cache hit), we can serve the request
immediately and pay a negligible hit cost c0, as shown in
Fig. 1. Instead, if the data is not stored in the edge cache
(i.e., a cache miss), we need to fetch the data from the data
storage in the network core. Specifically, we can fetch the
missed data from the intermediate caching node at a relatively
small cost c1, if it is stored there. Otherwise, the data has
to be retrieved from the backend data center at a larger cost
c2. After retrieving the missed data, the request can be served
without loading the missed data into the edge cache.

However, whether the missed data can be served from an
intermediate caching node is uncertain because 1) the data
stored in the intermediate node are dynamically changing and
2) the dynamic routing strategies may not always direct the
request to the same intermediate node depending on real time
network traffic. To model such uncertainties, we use Bernoulli
random variables with unknown parameters to represent the
miss costs. In particular, when a cache miss happens, the
service cost of the data item di, 1 ≤ i ≤ N , takes value c2 with
a probability qi and c1 with a probability 1−qi independently
in each time slot, where qi can be interpreted as the probability
that the data item di is not stored in the intermediate caching
node. We assume that the constant c2, c1 and c0 are known
and satisfy c2 > c1 > c0 ≥ 0. The parameter qi’s, as well as
the data popularity pi’s, are unknown and need to be estimated
for designing efficient edge caching policies.

B. Edge Caching for Cost Minimization

In this paper, we focus on the edge caching problem without
prefetching, i.e., an uncached data item will not be loaded into
the cache unless a user request it. This is because prefetching
operations will incur additional but unnecessary data fetching
cost in our model. In particular, an edge caching policy needs
to make the following decision:

• When a cache miss happens, should the requested data
be loaded into the edge cache?

• If the cache is already full, which cached item should be
evicted to make room for the new one?

Our goal is to design an efficient edge caching policy to
minimize the accumulated expected service costs.

For a time horizon n, let Cost(n) denote the expected
service cost accumulated from t = 1 to t = n. For each
data item di, define

T in
i (n) =

n∑
t=1

1(di is stored in the edge cache at time t),

T out
i (n) =

n∑
t=1

1(di is not stored in the edge cache at time t).

T in
i (n) and T out

i (n) are random variables and depend on the
edge caching policy. Let

γi = qic2 + (1− qi)c1 − c0,

which can be interpreted as the cost reduction achieved by
storing di in the edge cache. We can derive the accumulated
expected cost as

Cost(n) =

N∑
i=1

E[T out
i (n)]pi(γi + c0) +

N∑
i=1

E[T in
i (n)]pic0

=nc0 +

N∑
i=1

E[T out
i (n)]piγi,

where the last equation holds because T in
i (n) + T out

i (n) = n
for each data item di. Our objective is to design good edge
caching polices that minimize Cost(n) for large n.

First, we consider an idealized scenario where the parameter
pi and qi are known. In this scenario, the optimal policy is to
always store the data items with the largest piγi values in the
edge cache. And we denote this optimal policy as π∗. This
strategy attempts to achieve the largest cost reduction through
caching. Without loss of generality, we assume that the data
items could be strictly ordered based on piγi and are indexed
such that piγi > pjγj for any 1 ≤ i < j ≤ N . The results
of this paper can be easily extended to the case without the
strict ordering (i.e., existing i 6= j with piγi = pjγj). Then,
the optimal policy π∗ simply stores the first K items. We call
the set {di : 1 ≤ i ≤ K} the optimal choice set, and the set
{di : K + 1 ≤ i ≤ N} the suboptimal choice set.

In this paper, we consider a more realistic setting where
qi and pi are unknown for reasons that are described in the
previous section. Consequently, γi is also unknown, being a
function of qi. Thus, we need to adaptively learn pi and qi
and update the cache content accordingly.

Due to the embedded learning nature of the problem, the
performance of edge caching policies will be evaluated by
regrets. This is a classical learning metric which characterizes
the difference between the expected accumulated cost achieved
by an edge caching policy and the one achieved by the
idealized optimal policy π∗ with known pi and qi. Formally,
we define the regret over a time horizon n as

Regret(n)

= Cost(n)−
(

K∑
i=1

npic0 +

N∑
i=K+1

npi(qic2 + (1− qi)c1)
)

= Cost(n)−
(
nc0 +

N∑
i=K+1

npiγi

)

=

N∑
i=1

E[T out
i (n)]piγi −

N∑
i=K+1

npiγi.

Minimizing the expected accumulated cost Cost(n) is equiv-
alent to minimizing the regret Regret(n). Next, we will
introduce our motivation to use online learning techniques and
the challenges.
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III. MOTIVATIONS AND CHALLENGES

In this section, we first introduce our motivation by show-
ing that a natural heuristic design could achieve significant
inefficiency. To solve this issue, we propose to leverage
online learning to adaptively estimate the unknown parameters.
However, existing online learning algorithms do not consider
the specific constraints and dynamics in caching systems and
therefore cannot be applied directly. We then introduce the
challenges of combining online learning and caching.

A. Motivation: Inefficiency of Heuristic Designs

An edge caching policy needs to estimate the unknown
parameters pi and qi based on history information and make
caching decisions accordingly. Define

Tmiss
i (t) =

t∑
s=1

1(Rs = di and is not in edge cache),

T back
i (t) =

t∑
s=1

1(Rs = di and is served from

the backend data center).

Recall that qi is the probability that the data item di is not
stored in the intermediate cache. The unbiased estimation of
pi and qi at time t could be the sample means

p̂i(t) =

t∑
s=1

1(di is requested at s)/t, (1)

q̂i(t) = T back
i (t)/Tmiss

i (t). (2)

A heuristic caching policy would estimate γi by

γ̂i(t) = q̂i(t)c2 + (1− q̂i(t)) c1 − c0, (3)

and evict the data item with the smallest p̂i(t)γ̂i(t) value when
the cache is full. We formally describe this heuristic edge
caching policy in Algorithm 1.

Algorithm 1: Heuristic Edge Caching Policy

1 Initialization: Tmiss
i (0) = T back

i (0) = q̂i(0) = 0,
γ̂i(0) = c1 − c0, 1 ≤ i ≤ N ;

2 for t = 1 : n do
3 Assume w.o.l.g. that Rt = di;
4 if di is not stored in the edge cache then
5 Fetch di to serve the request;
6 Update p̂i(t) and γ̂i(t) based on (1) and (3);
7 if Edge cache is full then
8 j = argmin{p̂k(t)γ̂k(t) :

dk is currently stored in the edge cache};
9 if p̂i(t)γ̂i(t) > p̂j(t)γ̂j(t) then

10 Load di into the cache and evict dj ;
11 else
12 Load di into the cache;
13 end
14 end

Interestingly, this heuristic policy could be extremely in-
efficient, which is validated by simulations in Section VII.

The issue comes from the estimation of qi. When a data
item di is stored in the edge cache, we will not be able
to observe its miss cost, and therefore cannot update the
estimation of qi. The inaccurate estimation at the early stage
could make the edge cache stop collecting observations for
already cached data items and get stuck in a suboptimal
solution. In order to solve this issue, we are motivated to
leverage online learning techniques to estimate qi and update
cache content strategically.

B. Our Approach: Adaptive Caching via Online Learning

We first highlight an exploration and exploitation trade-off
for the proposed edge caching problem:
Exploration: we would like to introduce cache misses inten-
tionally to collect more observations on the miss cost. This
could improve the accuracy of the estimations of qi.
Exploitation: we would like to exploit the current estimation
and cache the items with the largest potential gains. This could
reduce the overall service costs.

The proposed heuristic policy only exploits but never ex-
plores, and therefore performs quite poorly. In order to effi-
ciently learn the unknown parameters and meanwhile achieve
good caching performance, we have to balance the exploration
and exploitation trade-off.

This trade-off has been extensively studied in online learn-
ing literature (in particular, the stochastic multi-armed bandit
(MAB) problems [7]). We point out that the proposed edge
caching problem share some similarities with combinatorial
multi-armed bandit (CMAB) problems. Specifically, it is sim-
ilar to stochastic combinatorial semi bandits with N arms in
total and N −K arms played at each time slot [7]. However,
conventional algorithms and analysis for CMAB problems
cannot be directly applied to the edge caching scenario due to
additional cache capacity and cache update constraints.

C. Key Challenge: Learning with Caching Constraints

The edge caching problem has the following additional
constraints compared with the combinatorial bandit problem:

• At each time slot, the edge caching policy can add at most
one data item into the cache, which depends on the data
requests, while the action space of conventional bandit
problems typically has no such constraints.

• The data items that can be stored at time t depend on the
cache content at the previous time slot t− 1. In contrast,
the action space of bandit problems typically does not
have such time correlations.

These constraints in edge caching systems make the problem
more challenging. The standard bandit algorithms and analysis
cannot be directly applied. To solve this issue, we need to
propose novel edge caching policies and use new theoretical
tools to analyze its performance. To that end, in the next
section, we derive a regret lower bound over all policies of
interest, followed in the subsequent section by a new design
with a novel regret upper bound that matches the scaling of
the lower bound, thereby proving its asymptotic-optimality.
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IV. REGRET LOWER BOUND

Before designing edge caching polices, we first derive a
lower bound for the regret performance of all “good” policies.
Following the approach of the seminal work [29], we say that
an edge caching policy is a uniformly good policy, if the regret
achieved by it satisfies Regret(n) = o(nα) for ∀α > 0.
Let DKL(p, q) denote the Kullback-Leibler divergence for
two Bernoulli random variables with parameter p and q,
respectively. We have for 0 < p < 1 and 0 < q < 1,

DKL(p, q) = p log
p

q
+ (1− p) log 1− p

1− q .

We prove a regret lower bound in the following theorem.

Theorem 1. For any uniformly good policy, the regret satisfies

lim inf
n→+∞

Regret(n)

log n

≥
∑
i∈S

piγi − pK+1γK+1

DKL

(
qi,

pK+1γK+1−pi(c1−c0)
pi(c2−c1)

)
· pi

,

where S = {1 ≤ i ≤ K : pi(c1 − c0) < pK+1γK+1}.
The proof of this theorem is not a simple application of

the proof for classic MAB problems, due to the data request
dynamics and cache capacity and update constraints of the
edge caching systems. Novel approaches are proposed to
capture the structure of the edge caching system, which are
presented in Section A. Theorem 1 shows that the regret
increases at least logarithmically with the particular coefficient
on the right-hand side asymptotically with the time horizon n,
if the set S is not empty. Recall that the data items are indexed
such that piγi is decreasing. We make a few remarks on this
result:
• The constant on the right-hand side of the regret lower

bound depends on the “distance”, as measured by the
piγi values and a specific form of the Kullback-Leibler
divergence, between the data items in the optimal choice
set (i.e, di, 1 ≤ i ≤ K) and the best data item in the
suboptimal choice set (i.e., dK+1).

• The scaling is independent of N or N − K. This is
different from most MAB regret performances where the
number of arms is a scaling factor. This property arises
due to the particular structure of the caching system and
is explained in Section VI-C.

Moreover, note that for di /∈ S with 1 ≤ i ≤ K and dj
with K + 1 ≤ j ≤ N , we must have

piγi > pi(c1 − c0) ≥ pK+1γK+1 ≥ pjγj ,
for ∀qi ∈ (0, 1), which indicates that we could easily distin-
guish di from the suboptimal choice set (i.e., dj , K+1 ≤ j ≤
N ), even when the estimation of qi is arbitrarily chosen. Thus,
the scenario with empty S degenerates to a trivial problem and
is not the main focus of this paper.

V. ASYMPTOTICALLY OPTIMAL EDGE CACHING POLICY

In this section, we first propose a novel edge caching policy
that leverages online learning ideas. Then, we prove that the
proposed policy achieves asymptotically optimal regrets.

A. KL-LCB Based Edge Caching Policy

Instead of estimating qi by the sample mean q̂i(t) like the
heuristic policy, we follow the principle of “optimism in the
face of uncertainty” [7] and estimate qi by

q̃i(t) = min

{
q ∈ (0, 1) : DKL(q̂i(t), q) ≤

log f(t)

Tmiss
i (t)

}
, (4)

where q̂i(t) is defined in (2) and f(t) = 1 + t(log t)2. We
have 0 < q̃i(t) ≤ q̂i(t) and the “distance” between q̃i(t)
and q̂i(t) is characterized by log f(t)/Tmiss

i (t). This design is
inspired by the KL-UCB algorithm for reward maximization
in conventional stochastic MAB problems [30], [31]. For the
edge caching problem, our goal is cost minimization. So we
apply the KL-LCB based design that is symmetric to KL-UCB.

With q̃i(t), we can estimate γi by

γ̃i(t) = q̃i(t)c2 + (1− q̃i(t)) c1 − c0, (5)

and attempt to cache the items with the largest p̂i(t)γ̃i(t).
Formally, a KL-LCB based edge caching policy is proposed
in Algorithm 2.

When the data request is a cache hit, we do not update
the cache content. When the requested data (e.g., di) is not
stored in the edge cache, we will fetch di from the intermediate
cache, or, if it is not stored there, from the backend data center,
and update the estimations based on the observation. Then,
we find the cached data item dj with the smallest p̂j(t)γ̃j(t)
values among all cached data items. If p̂i(t)γ̃i(t) > p̂j(t)γ̃j(t),
dj will be replaced by the newly-requested data item di. On
the one hand, the proposed policy attempts to cache the data
items with large p̂i(t)γ̃i(t) values, which exploits the current
knowledge. On the other hand, assume di is currently cached.
log(t)/Tmiss

i (t) will increase with time t, and consequently,
p̂i(t)γ̃i(t) will gradually decrease. As a result, di will finally
be evicted, which encourages exploration.

Note that, in Algorithm 2, pi is simply estimated by the
sample mean rather than KL-LCB based statistics. This is
because we could always observe the requested data regardless
of the caching decisions.

Algorithm 2: KL-LCB based Edge Caching Policy

1 Initialization: Tmiss
i (0) = T back

i (0) = q̂i(0) = q̃i(0) = 0,
γ̂i(0) = c1 − c0, 1 ≤ i ≤ N ;

2 for t = 1 : n do
3 Assume w.o.l.g. that Rt = di;
4 if di is not stored in the edge cache then
5 Fetch di to serve the request;
6 Update p̂i(t) and γ̃i(t) based on (1) and (5);
7 if Edge cache is full then
8 j = argmin{p̂k(t)γ̃k(t) :

dk is currently stored in the edge cache};
9 if p̂i(t)γ̃i(t) > p̂j(t)γ̃j(t) then

10 Load di into the cache and evict dj ;
11 else
12 Load di into the cache;
13 end
14 end
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B. Regret Upper Bound and Asymptotic Optimality

We provide theoretical performance guarantees for the pro-
posed KL-LCB based edge caching policy by deriving a regret
upper bound in Theorem 2.

Theorem 2. For the proposed KL-LCB based policy, we have

lim sup
n→+∞

Regret(n)

log n

≤
∑
i∈S

piγi − pK+1γK+1

DKL

(
qi,

pK+1γK+1−pi(c1−c0)
pi(c2−c1)

)
· pi

,

where S = {1 ≤ i ≤ K : pi(c1 − c0) < pK+1γK+1}.
The upper bound derived in Theorem 2 matches the lower

bound derived in Theorem 1. Therefore, we can conclude
that the proposed KL-LCB based edge caching policy is
asymptotically optimal if the set S is not empty.

It is well known that the KL-UCB policy achieves asymp-
totically optimal regrets for conventional stochastic MAB
problems with Bernoulli-distributed rewards. One question is
whether the KL-LCB based edge caching policy proposed
in this paper is a simple application of the KL-UCB policy.
The answer is no. Although the miss cost estimation in the
proposed edge caching policy is symmetric to the reward
estimation in KL-UCB, the theoretical analysis of the pro-
posed edge caching policy is much more challenging for the
following reasons:
• The nature of edge caching systems imposes significant

complexity into performance analysis. In particular, the
data items that can be cached at a time slot t depend on
the data items that were already cached at the previous
time slot t−1, while in the original KL-UCB setting, the
action space have no such time correlations.

• The data request process introduces new dynamics com-
pared to the original MAB settings. Specifically, the
action space at each slot depend on a random data request,
while in the original KL-UCB setting, there is no such
dependency.

Simply applying existing analysis of the KL-UCB policy
cannot resolve these challenges. Instead, we need to develop
novel approaches in this paper to analyze the theoretical
performance. In particular,
• We characterize the nature of the caching systems by

exploring the relationship between Tmiss
i (n), T out

i (n) and
T in
i (n), 1 ≤ i ≤ N .

• Instead of showing the convergence in expectation for
critical statistics as in the conventional MAB analysis, our
setting requires much stronger almost-sure convergence
results, which need non-trivial new analysis.

C. Sketch of Proof for Theorem 2

In this section, we briefly introduce the proof for Theorem 2.
First, we need to establish a few lemmas.

Lemma 1. The regret of the KL-LCB based edge
caching policy can be upper bounded as Regret(n) ≤∑K
i=1 E[T out

i (n)]piγi − E[T in
K+1(n)]pK+1γK+1.

Lemma 1 provides a regret upper bound related to the costs
introduced by the optimal choice set (i.e., di, 1 ≤ i ≤ K) and
best suboptimal choice (i.e., dK+1). The proof of this lemma
leverages the cache capacity constraint, and is presented in
Appendix B. To connect this upper bound with Theorem 2, we
need to characterize E[T out

i (n)], 1 ≤ i ≤ K, and E[T in
K+1(n)]

under the proposed KL-LCB based policy.

Lemma 2. Under the KL-LCB based policy, for 1 ≤ i ≤ K,
we have, if pi(c1 − c0) < pK+1γK+1, then

lim sup
n→+∞

E [T out
i (n)]

log n

≤ 1
/(

pi ·DKL

(
qi,

pK+1γK+1 − pi(c1 − c0)
pi(c2 − c1)

))
, (6)

otherwise limn→+∞ E [T out
i (n)] / log n = 0.

Lemma 2 shows an upper bound for E[T out
i (n)], 1 ≤ i ≤

K, under the proposed KL-LCB based policy. The proof of
Lemma 2 is shown in Appendix C. Next, we will show a
relationship between E[T out

i (n)], 1 ≤ i ≤ K, and E[T in
K+1(n)],

which is the most critical and challenging part for the proof
of Theorem 2.

Lemma 3. For 1 ≤ i ≤ K, if pi(c1− c0) < pK+1γK+1, then
under the KL-LCB based edge caching policy, we have

lim
n→+∞

E[T in
K+1(n)]∑K

i=1 E[T out
i (n)]

= 1.

The proof of this lemma is presented in Appendix D.
Lemma 3 indicates that under the KL-LCB based edge caching
policy, the duration of time when the cache content is not
the optimal choice set (i.e.,

∑K
i=1 E[T out

i (n)]) is approximately
equal to the duration of time when the best suboptimal choice
is stored in the cache (i.e, E[T in

K+1(n)]). In other words,
when the time horizon n is large, the proposed policy almost
only gets confused with the best suboptimal data item dK+1,
and is confident that other suboptimal data items should
not be cached. Intuitively, this result makes a lot of sense,
because other suboptimal data items have a larger gap with
the optimal choice set and should be easier to distinguish.
However, proving this lemma rigorously requires establishing
the almost-sure convergence results for critical statistics such
as q̃i(t), Tmiss

i (t), etc, and is highly non-trivial.
Now, we are ready to prove Theorem 2.

Proof of Theorem 2. Combining Lemmas 1, 2 and 3, we have

lim sup
n→+∞

Regret(n)

log n

(a)

≤ lim sup
n→+∞

∑K
i=1 E[T out

i (n)]piγi − E[T in
K+1(n)]pK+1γK+1

log n

(b)
= lim sup

n→+∞

∑K
i=1 E[T out

i (n)](piγi − pK+1γK+1)

log n
(c)

≤
∑
i∈S

piγi − pK+1γK+1

DKL

(
qi,

pK+1γK+1−pi(c1−c0)
pi(c2−c1)

)
· pi

,

where S = {1 ≤ i ≤ K : pi(c1−c0) < pK+1γK+1}. Note that
steps (a), (b) and (c) leverage Lemmas 1, 3 and 2, respectively.
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VI. DISCUSSION AND GENERALIZATION

In the section, we extend our design to allow for non-
identical data sizes, discuss the benefit of additional obser-
vations and explain why the regret bounds do not scale up
with N −K.

A. Non-identical Data Sizes

Although our design has been under the assumption of unit
data sizes, we can generalize the proposed KL-LCB policy
for non-identical data sizes. Let si denote the size of the
data item di, 1 ≤ i ≤ N . When pi and qi are known, the
service cost minimization problem can be cast into a knapsack
problem, which is non-trivial to solve. However, when the
cache size is large, storing the data items with the largest
piγi/si values in the edge cache is a good approximation
for the optimal solution. This idea has been adopted by a
few caching policies and system designs [2], [6]. Similarly, to
allow for non-identical data sizes, we could generalize the KL-
LCB based policy by replacing all p̂i(t)γ̃i(t) in Algorithm 2
with p̂i(t)γ̃i(t)/si. The regret analysis for this generalized
policy becomes more challenging due to the approximation
algorithm for the knapsack problem and is beyond the scope
of this paper. Instead, we compare the performance of this
extended policy with other benchmarks through numerical
simulations in Section VII, Experiment 2.

B. Additional Observation Opportunities

In this paper, we assume that whether a data item di can
be accessed from the intermediate cache is unknown, and
we can obtain an observation only when the request of di
is not fulfilled at the edge and redirected to the intermediate
cache. The unknown parameter qi is then estimated based on
such observations. Notably, we could benefit from additional
observation opportunities by enabling the intermediate cache
to send the indices of its content to the edge cache at some cost
cshare. And, at each time slot, the edge cache could decide
whether to query the content indices in the intermediate cache
and pay the additional cost. The optimal index sharing decision
could depend on the value of cshare and the amount of
observations that have been collected so far. At the early stage,
index sharing is plausible to facilitate exploration. Later on,
the index sharing may not be preferred to avoid unnecessary
costs. The additional observations have been investigated for
conventional stochastic MAB problems [32], [33]. However,
the optimal decision in caching applications still remains
unknown due to the additional caching constraints discussed
in Section III-C and deserves further explorations.

C. Why does the regret not scale up with N −K?

For the conventional stochastic combinatorial semi bandit
problem with linear reward functions, it is shown in [34] that
the regret lower bound scales up with K(N −K). However,
the regret bounds derived in Theorems 1 and 2 only scale up
with K, and are independent of N − K. This is due to a
special structure of the caching problem, i.e., the popularity
distribution always satisfies

∑N
i=1 pi = 1 as N scales up.

Combining this with the fact that c0 < c1 < c2, the expected
service cost incurred in each round is always bounded by c2,
regardless of N or N−K. Instead, for conventional stochastic
combinatorial semi bandit with linear reward functions, the
cost or reward in each round will scale up with the number of
arms that can be played (i.e., N−K), which is a key property
used to prove the scaling factor in the lower bound [34], [35].

VII. NUMERICAL EVALUATION

In this section, we present the numerical simulations. In
Experiment 1 and 2, we compare the proposed policies with
a few benchmarks for identical and non-identical data sizes,
respectively. In Experiment 3, we evaluate the regret of the
KL-LCB policy under different N values.

Caching policies: We evaluate the performance of the
following policies that can be categorized into two classes.
Class 1: Policies that do not consider service costs
• Opt-Hit: The optimal policy that maximizes hit ratios in

an idealized scenario where pi’s are known. It will cache
the items with the largest pi if data sizes are identical.

• LFU: Cache the items with the largest request frequency.
• LRU: Cache the most recently used items.

Class 2: Policies that take account of service costs
• Opt-Cost: The optimal policy that minimizes the accumu-

lated service cost in an idealized scenario where pi and qi
are known, i.e., the policy π∗ introduced in Section II-B.

• Heuristic: The policy proposed in Algorithm 1.
• KL-LCB: The policy proposed in Algorithm 2.
Experiment 1: Consider a total number of 1000 data items.

Set the cache capacity K = 200, c0 = 1, c1 = 5, c2 =
100. Assume that data popularities follow a Zipf’s distribution,
which has been validated by real data traces [36], [37], [1].
Specifically, set pi = b · i−0.4, 1 ≤ i ≤ 1000, where b =
1/
∑1000
i=1 i−0.4 = 9.61× 10−3 is the normalization factor. Set

qi = 0.2 for 1 ≤ i ≤ 500 and qi = 0.9 for 501 ≤ i ≤ 1000.
Thus, a more popular data item will have a larger probability
(i.e., 1−qi) to be stored in the intermediate cache. Notably, in
the main paper, we assumed that data items are indexed such
that piγi is decreasing for the ease of presentation. However,
in this experiment, the data items are indexed such that the
popularity pi is decreasing.

In Fig. 2a, we plot the regrets, i.e., the differences in
accumulated costs between a policy and the optimal policy
Opt-Cost. The KL-LCB based policy achieves a sublinear
regret which is significantly smaller than all the alternatives.
Although the heuristic policy takes account of the service
costs, its regret still increases linearly like other benchmarks
that do not consider service costs, due to the reason discussed
in Section III-A. Moreover, the Opt-Hit policy achieves con-
siderably worse performance than KL-LCB, which implies
that other popularity-driven polices not simulated in this
experiment may also have a large performance gap with KL-
LCB, if their goal is maximizing hit ratios.

In Fig. 2b, we illustrate the average cost to serve a data
request. The proposed KL-LCB based policy converges to
the Opt-Cost policy by strategically learning unknown pi and
qi, while all the other benchmarks are trapped in suboptimal
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Fig. 2: Performance evaluation with identical data sizes.
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Fig. 3: Performance evaluation with non-identical data sizes.

solutions. Furthermore, it can be verified in Fig. 2c that
traditional popularity-driven policies, including Opt-Hit, LFU
and LRU, indeed achieve high hit ratios, but higher hit ratios
cannot guarantee lower service costs. Therefore, the carefully
designed cost learning procedure proposed in the KL-LCB
policy is critical for achieving good performance.

Experiment 2: In Section VI, we generalize the KL-
LCB policy to allow for non-identical data sizes. In this
experiment, we compare this generalized policy with pre-
mentioned benchmarks that are also extended for non-identical
data sizes. Using a similar approximation for the optimal
solution of the knapsack problem introduced in Section VI,
we let the Opt-Hit policy caches the items with the largest
pi/si values. We extend the LFU policy by caching the items
with the largest p̂i(t)/si, which is an approximation of Hit-Opt
when popularities are unknown. For the LRU policies, multiple
least recently used items could be evicted to make room for
the newly requested one. The Opt-Cost policy knows pi and
qi parameters and stores the items with the largest piγi/si
values. The heuristic policy proposed in Algorithm 1 could be
extended by replacing all p̂i(t) with p̂i(t)/si. The regret of a
policy π is the cost differences between π and Opt-Cost.

We set the cache size K = 500 and select the data size si
from a uniform distribution between 1 and 10. All the other
settings are identical to those in Experiment 1. The numerical
results for regrets, averages costs and hit ratios are presented
in Fig. 3. Similar to the results in Experiment 1, the extended
KL-LCB policy achieves a sublinear regret which is much
better than the other benchmarks (Fig. 3a). And the average
cost of KL-LCB converges to Opt-Cost (Fig. 3b)

Experiment 3: Theorems 1 and 2 show that the scaling
factor of the regret only depends on the pi and qi values of
the first K + 1 items and does not scale up with the total
number of items N . In this experiment, we evaluate the regret
of the proposed KL-LCB policy with different N values. To
verify the theoretical results, we would like to construct pi
and qi, such that their values do not change as N scales up
for 1 ≤ i ≤ K + 1. In particular, set the cache capacity
K = 100, c0 = 1, c1 = 5, c2 = 100. We let pi = b1 · i−0.4 for
1 ≤ i ≤ K+1, and pi = b2·i−0.4 for K+2 ≤ i ≤ N , where b1
and b2 are choosing such that

∑K+1
i=1 pi =

∑N
i=K+2 pi = 0.5.

Set qi = 0.5 for 1 ≤ i ≤ K + 1 and qi = 0.2 for K + 2 ≤
i ≤ N . We simulate the regret for N = 1000, 5000, 10000,
respectively and present the results in Fig. 4. It can be observed
that the regret does not scale up with N .
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Fig. 4: Regret of KL-LCB policy with different N values.



9

VIII. CONCLUSION

Existing cost-based caching policies typically assume
known and fixed costs to handle cache misses, which is
not always the case in real systems. Various sources of
uncertainties exist in the process of fetching missed data
from the backend in a content delivery network, including
communication failures, packet drops, dynamically changing
cache contents, etc. To address this issue, we focused on
an edge caching scenario where the miss costs are random
with unknown statistics and developed novel caching policies
that learn the unknown statistics efficiently. By presenting
a carefully-designed example, we first show that a heuristic
learning design could induce significant caching inefficiency.
We then derived a regret lower bound for any uniformly good
policy. Inspired by the “optimism in the face of uncertainty”
principle in online learning literature, we developed a KL-
LCB based edge caching policy and proved that it achieves the
regret lower bound and is asymptotically optimal. Extensive
numerical experiments indicate the proposed policy signifi-
cantly improves caching performance over other benchmarks.
The novel techniques used in this work to handle caching
constraints and dynamics could be potentially leveraged to
design and analyze learning mechanisms for other systems.

APPENDIX A
PROOF OF THEOREM 1

As discussed in Section II-B, the optimal policy with known
pi and qi always store the data items di, 1 ≤ i ≤ K in the
cache. The regret can be bounded as

Regret(n) =

K∑
i=1

E[T out
i (n)]piγi −

N∑
i=K+1

E[T in
i (n)]piγi

≥
K∑
i=1

E[T out
i (n)]piγi −

N∑
i=K+1

E[T in
i (n)]pK+1γK+1

≥
K∑
i=1

E[T out
i (n)](piγi − pK+1γK+1), (7)

where the last inequality is due to
∑N
i=K+1 E[T in

i (n)] ≤∑K
i=1 E[T out

i (n)]. The key step to prove this theorem is deriv-
ing a lower bound for E[T out

i (n)] or E[Tmiss
i (n)], 1 ≤ i ≤ K.

Without loss of generality, we focus on E[Tmiss
i (n)] for i =

1. To analyze the lower bound for E[Tmiss
1 (n)], we introduce

two instances ν and ν′, where ν is the original instance of our
problem and ν′ is the instance that could confuse the policy. In
particular, under ν′, we set p′i = pi for 1 ≤ i ≤ N and q′i = qi
for 2 ≤ i ≤ N . Assume that p1(c1 − c0) < pK+1γK+1. For
ε > 0, we can select q′1 ∈ (0, q1) such that

DKL

(
q1,

pK+1γK+1 − p1(c1 − c0)
p1(c2 − c1)

)
< DKL(q1, q

′
1)

< DKL

(
q1,

pK+1γK+1 − p1(c1 − c0)
p1(c2 − c1)

)
+ ε. (8)

Define γ′i = q′ic2 + (1 − q′i)c1 − c0. Under the setting of ν′,
d1 becomes a suboptimal data item since p′1γ

′
1 < p′iγ

′
i for

2 ≤ i ≤ K + 1. The optimal solution is to store items di,
2 ≤ i ≤ K + 1, in the cache.

Define an event A = {T out
1 (n) ≥ n/2} and its complement

Ac = {T out
1 (n) < n/2}. Let Regret′(n) denote the regret

achieved under the predefined instance ν′. We have

Regret(n) ≥ Pν [A](p1γ1 − pK+1γK+1)n/2,

Regret′(n) ≥ Pν′ [Ac](pK+1γK+1 − p1γ
′
1)n/2,

which yields

Regret(n) +Regret′(n) (9)
≥ (Pν [A] + Pν′ [Ac])

·min {p1q1 − pK+1γK+1, pK+1qK+1 − p1γ
′
1}n/2

≥ exp (−D(Pν ,Pν′))

·min {p1γ1 − pK+1γK+1, pK+1γK+1 − p1γ
′
1}n/4.

The last inequality holds because of the Bretagnolle-Huber
inequality and D(Pν ,Pν′) is the relative entropy between the
distributions Pν and Pν′ . Next, we will derive the expression
of D(Pν ,Pν′).

Let Rt, At, Ct denote the data item requested at t, the set of
data items that are stored in the cache after serving Rt based
on the caching policy, and the cost to serve Rt, respectively.
Rt, At, Ct are random variables. Let A0 denote the set of data
items that are initially stored in the cache. We use Rji , i <
j, to denote the list of random variables Ri, Ri+1, · · · , Rj .
Similarly, we can define Aji , C

j
i .

Given the time horizon n (i.e, 1 ≤ t ≤ n), we have

D(Pν ,Pν′) = Eν
[
log

Pν
Pν′

[Rn1 , A
n
1 , C

n
1 | A0]

]
, (10)

Under both instances, we have

P [Rn1 , A
n
1 , C

n
1 | A0]

= P[R1, A1, C1 | A0] ·
n∏
t=2

P
[
Rt, At, Ct | Rt−1

1 , At−1
0 , Ct−1

1

]
= P[R1, A1 | A0] · P[C1 | R1, A1, A0]

·
n∏
t=2

P
[
Rt, At | Rt−1

1 , At−1
0 , Ct−1

1

]
P
[
Ct | Rt1, At0, Ct−1

1

]
= P[R1, A1 | A0] · P[C1 | R1, A0]

·
n∏
t=2

P
[
Rt, At | Rt−1

1 , At−1
0 , Ct−1

1

]
P [Ct | Rt, At−1] ,

where the last equality is due to the fact that the cost Ct only
depends on the request Rt and the data items stored in the
cache before the Rt arrives, i.e., At−1. Moreover, we have

Pν
Pν′

[R1, A1 | A0] = 1,

Pν
Pν′

[
Rt, At | Rt−1

1 , At−1
0 , Ct−1

1

]
= 1, 2 ≤ t ≤ n,

since under the two instances, the popularity distributions are
identical and the policy will make the same decision At given
the same history Rt−1

1 , At−1
0 , Ct−1

1 .
Therefore, we have

Pν
Pν′

[Rn1 , A
n
1 , C

n
1 | A0] =

n∏
t=1

Pν
Pν′

[Ct | Rt, At−1] .
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For each time slot t, define the event Et as

Et = {Rt = d1, d1 /∈ At−1}.
Let Ect denote the complementary event of Et. We have

Pν
Pν′

[Ct | Rt, At−1, Ect ] = 1,

because the two instances only differs in the first data item.
The relative entropy D(Pν ,Pν′) defined in (10) can be sim-
plified as

D(Pν ,Pν′) =

n∑
t=1

Eν
[
log

(
Pν
Pν′

[Ct | Rt, At−1]

)]
=

n∑
t=1

Eν
[
1(Et) log

(
Pν
Pν′

[Ct | Rt, At−1]

)
+ 1(Ect ) log

(
Pν
Pν′

[Ct | Rt, At−1]

)]
=

n∑
t=1

Eν
[
1(Et) log

(
Pν
Pν′

[Ct | Rt, At−1]

)]
=

n∑
t=1

Eν [1(Et) ·DKL(q1, q
′
1)]

= Eν [Tmiss
i (n)] ·DKL(q1, q

′
1). (11)

Combining (8), (9) and (11), we have

Regret(n) +Regret′(n)

≥ exp
(
−Eν [Tmiss

i (n)] ·DKL(q1, q
′
1)
)

·min {p1γ1 − pK+1γK+1, pK+1γK+1 − p1γ
′
1}
n

4

≥ exp

(
− Eν [Tmiss

i (n)]

·
(
DKL

(
q1,

pK+1γK+1 − p1(c1 − c0)
p1(c2 − c1)

)
+ ε

))
·min {p1γ1 − pK+1γK+1, pK+1γK+1 − p1γ

′
1}
n

4
,

which indicates that, for ∀ε > 0, we have

Eν [Tmiss
i (n)] ≥ 1

DKL

(
q1,

pK+1γK+1−p1(c1−c0)
p1(c2−c1)

)
+ ε

· log n ·min {p1γ1 − pK+1γK+1, pK+1γK+1 − p1γ
′
1}

Regret(n) +Regret′(n)
.

Recall that the uniformly good policy has Regret(n) = o(nα)
and Regret′(n) = o(nα) for ∀α > 0. We have

lim inf
n→+∞

Eν [Tmiss
1 (n)]

log n
≥ 1

DKL

(
q1,

pK+1γK+1−p1(c1−c0)
p1(c2−c1)

)
· lim inf
n→+∞

(
1− log(Regret(n) +Regret′(n))

log n

+
logmin {p1γ1 − pK+1γK+1, pK+1γK+1 − p1γ

′
1}

log n

)
≥ 1

DKL

(
q1,

pK+1γK+1−p1(c1−c0)
p1(c2−c1)

) .

Using a similar approach, we can prove that for any 1 ≤
i ≤ K, if pi(c1 − c0) < pK+1γK+1, then

lim inf
n→+∞

Eν [Tmiss
i (n)]

log n

≥ 1
/
DKL

(
qi,

pK+1γK+1 − pi(c1 − c0)
p1(c2 − c1)

)
. (12)

Combining (7) and (12) and using the weak law of large
numbers, we have

lim inf
n→+∞

Regret(n)

log n

≥ lim inf
n→+∞

K∑
i=1

E[T out
i (n)]

log n
(piγi − pK+1γK+1)

= lim inf
n→+∞

K∑
i=1

E[Tmiss
i (n)]/pi
log n

(piγi − pK+1γK+1)

≥
∑
i∈S

piγi − pK+1γK+1

DKL

(
qi,

pK+1γK+1−pi(c1−c0)
p1(c2−c1)

)
pi
,

where S = {1 ≤ i ≤ K : pi(c1 − c0) < pK+1γK+1}.

APPENDIX B
PROOF OF LEMMA 1

Based on the definition of the regret, we have

Regret(n) =

N∑
i=1

E[T out
i (n)]piγi −

N∑
i=K+1

npiγi

=

K∑
i=1

E[T out
i (n)]piγi −

N∑
i=K+1

E[T in
i (n)]piγi

≤
K∑
i=1

E[T out
i (n)]piγi − E[T in

K+1(n)]pK+1γK+1.

APPENDIX C
PROOF OF LEMMA 2

Proof of Lemma 2. We will first derive bounds for
E[Tmiss

i (n)]. Define DKL(p, q) = DKL(p, q) · 1(p ≥ q).
Define q̂(s)

i = q̂i(t) with s samples (i.e., Tmiss
i (t) = s). For

ε > 0, define

τi = min
{
t ≥ 1 :

max
1≤s≤n

{DKL(q̂
(s)
i , qi + ε)− log f(t)/s} ≤ 0

}
.

Thus, for any t ≥ τi, we must have q̃i(t) ≤ qi + ε regardless
of the value of Tmiss

i (t).
We can bound P[τi > t] as

P[τi > t] ≤ P
[
∃s ∈ [1, n] : DKL(q̂

(s)
i , qi + ε) > log f(t)/s

]
≤

n∑
s=1

P
[
DKL(q̂

(s)
i , qi + ε) > log f(t)/s

]
=

n∑
s=1

P
[
DKL(q̂

(s)
i , qi + ε) > log f(t)/s, q̂

(s)
i ≥ qi + ε

]
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≤
n∑
s=1

P
[
DKL(q̂

(s)
i , qi)− 2ε2 > log f(t)/s, q̂

(s)
i ≥ qi + ε

]
≤

n∑
s=1

exp
(
−s(2ε2 + log f(t)/s)

)
≤ 1

2ε2f(t)
.

Let τ = maxK+1≤i≤N τi. We have

P[τ > t] = P
[

max
K+1≤i≤N

{τi} > t
]
≤

N∑
i=K+1

P[τi > t].

Therefore, we have

E[τ ] =
+∞∑
t=0

P[τ > t] ≤
+∞∑
t=0

N∑
i=K+1

P[τi > t]

≤
+∞∑
t=0

N∑
i=K+1

1

2ε2f(t)
=
N −K
2ε2

+∞∑
t=0

1

f(t)

≤ N −K
2ε2

∫ +∞

t=0

1

f(t)
dt ≤ 2(N −K)

ε2
. (13)

Define τ ′i = min{t ≥ 1 : p̂i(s) ∈ (pi − ε, pi +
ε) for all s ≥ t}. Let τ ′ = max1≤i≤N τ

′
i , we have

P[τ ′ ≥ t] ≤
N∑
i=1

P[τ ′i ≥ t] ≤
N∑
i=1

+∞∑
s=t

P[p̂i(s) /∈ (pi − ε, pi + ε)]

≤
N∑
i=1

+∞∑
s=t

exp(−2ε2s) ≤ N

2ε2
exp(−2ε2(t− 1)),

which yields

E[τ ′] =
+∞∑
t=0

P[τ ′ > t] ≤
+∞∑
i=1

N

2ε2
exp(−2ε2(t− 1))

≤ N exp(2ε2)

4ε4
. (14)

For 1 ≤ i ≤ K, E[Tmiss
i (n)] can be upper bounded as

E[Tmiss
i (n)] ≤ E[τ ] + E[τ ′]

+ E

[
n∑

t=max{τ,τ ′}

1(di is requested and missed at t)

]
. (15)

Recall that γ̃i(t) = q̃i(t)c2+(1− q̃i(t))c1−c0. Based on the
definition of τ and τ ′, there exists an ε′ small enough such that
p̂iγ̃i(t) ≤ piγi+ ε′ ≤ pK+1γK+1 + ε

′ for any K+1 ≤ i ≤ N
and t ≥ max{τ, τ ′}. As a result, we have

{di is requested and missed at t, 1 ≤ i ≤ K, t ≥ max{τ, τ ′}}
⊆ {p̂iγ̃i(t) ≤ pK+1γK+1 + ε′, 1 ≤ i ≤ K, t ≥ max{τ, τ ′}} .

To derive upper bounds for E[Tmiss
i (n)], 1 ≤ i ≤ K, we first

consider the case with (pi − ε)(c1 − c0) ≥ pK+1γK+1 + ε′.
For this case with t ≥ max{τ, τ ′}, 1 ≤ i ≤ K and K + 1 ≤
j ≤ N , we have p̂iγ̃i(t) ≥ (pi − ε)(c1 − c0) ≥ pK+1γK+1 +
ε′ ≥ p̂j γ̃j(t), which indicates that there is no cache miss for
t ≥ max{τ, τ ′}. Combining it with (13), (14) and (15), we
have if pi(c1 − c0) ≥ pK+1(γK+1 + ε′), then

E[Tmiss
i (n)] ≤ 2(N −K)

ε2
+
N exp(2ε2)

4ε4
+ 1. (16)

For the case with (pi−ε)(c1−c0) < pK+1γK+1+ε
′, define

DKL(t)
∆
= DKL

(
q̂i(t),

pK+1γK+1 + ε′ − (pi − ε)(c1 − c0)
(pi − ε)(c2 − c1)

)
.

Then we have

E

[
n∑

t=max{τ,τ ′}

1(di is requested and missed at t)

]

≤ 1 + E

[
n∑

t=max{τ,τ ′}

1
(
di is requested and missed at t,

DKL(t) ≤
log f(t)

Tmiss
i (t)

)]

≤
n∑
s=1

P[DKL(s) ≤ log f(n)/s] + 1. (17)

For any δ such that

0 < δ < qi −
pK+1γK+1 + ε′ − (pi − ε)(c1 − c0)

(pi − ε)(c2 − c1)
,

we have
n∑
s=1

P
[
DKL(s) ≤ log f(n)/s

]
≤

n∑
s=1

P
[{

q̂
(s)
i ≤ qi − δ

}
∪
{
DKL

(
qi − δ,

pK+1γK+1 + ε′ − (pi − ε)(c1 − c0)
(pi − ε)(c2 − c1)

)
≤ log f(n)/s

}]
≤ log f(n)

DKL

(
qi − δ, pK+1γK+1+ε′−(pi−ε)(c1−c0)

(pi−ε)(c2−c1)

)
+

n∑
s=1

P[q̂(s)
i ≤ qi − δ]

≤ log f(n)

DKL

(
qi − δ, pK+1γK+1+ε′−(pi−ε)(c1−c0)

(pi−ε)(c2−c1)

)
+

n∑
s=1

exp (−DKL(qi − δ, qi) · s)

≤ log f(n)

DKL

(
qi − δ, pK+1γK+1+ε′−(pi−ε)(c1−c0)

(pi−ε)(c2−c1)

)
+ 1/DKL(qi − δ, qi)

≤ log f(n)

DKL

(
qi − δ, pK+1γK+1+ε′−(pi−ε)(c1−c0)

(pi−ε)(c2−c1)

) +
1

δ2
. (18)

Combining (15), (17) and (18), we have, for 1 ≤ i ≤ K if
(pi − ε)(c1 − c0) ≥ pK+1γK+1 + ε′, then

E
[
Tmiss
i (n)

]
≤ log f(n)

DKL

(
qi − δ, pK+1γK+1+ε′−(pi−ε)(c1−c0)

(pi−ε)(c2−c1)

)
+

2(N −K)

ε2
+
N exp(2ε2)

4ε4
+

1

δ2
+ 1. (19)
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Note that (16) and (19) hold for any sufficiently small ε, ε′

and δ that are irrelevant to n. Thus, we have, for 1 ≤ i ≤ K,
if pi(c1 − c0) < pK+1γK+1,

lim sup
n→+∞

E
[
Tmiss
i (n)

]
/ log n

≤ 1
/
DKL

(
qi,

pK+1γK+1 − pi(c1 − c0)
pi(c2 − c1)

)
(20)

and if pi(c1 − c0) ≥ pK+1γK+1,

lim
n→+∞

E
[
Tmiss
i (n)

]
/ log n = 0. (21)

Moreover, the weak law of large numbers implies that

lim
n→+∞

E[Tmiss
i (n)]/E[T out

i (n)] = pi. (22)

Combining (20), (21) and (22) finishes the proof.

APPENDIX D
PROOF OF LEMMA 3

In order to prove Lemma 3, we will first introduce some
additional lemmas.

Lemma 4. Under the KL-LCB policy, for any 1 ≤ i ≤ K
with pi(c1 − c0) < pK+1γK+1 and any K + 1 ≤ i ≤ N ,
we have limt→+∞ Tmiss

i (t) = +∞ and limt→+∞ q̂i(t) = qi
almost surely.

Proof of Lemma 4. First, we claim that, as t→ +∞ we must
have T out

i (t) → +∞ almost surely for any 1 ≤ i ≤ K
with pi(c1 − c0) < pK+1γK+1 and any K + 1 ≤ i ≤ N .
Suppose towards a contradiction that limt→+∞ T out

i (t) < +∞.
Then there must exist a time τ , such that the data item
di will always be cached since τ . As a result, we have
log f(t)/Tmiss

i (t) ≥ log f(t)/τ → +∞ as t → +∞, which
yields limt→+∞ q̃i(t) = 0 and limt→+∞ γ̃i(t) = c1 − c0
according to (4) and (5). Thus, as t → +∞, we have
p̂i(t)γ̃i(t) → pi(c1 − c0) almost surely. Based on the KL-
LCB based policy, di will be eventually evicted from the cache
almost surely, which contradicts the assumption. Therefore, we
must have limt→+∞ T out

i (t) = +∞ almost surely. Further-
more, when di is not stored in the edge cache, a miss for di
happens with a probability pi independently at each time slot,
which indicates that limt→+∞ Tmiss

i (t) = +∞ almost surely
by the strong law of large numbers.

Recall the definition of q̂i(t) in (2). For each cache miss,
di is served from the backend data center with a probability
qi independently. Using the strong law of large numbers, we
have limt→+∞ q̂i(t) = qi almost surely.

Lemma 5. For 1 ≤ i ≤ K, if pi(c1− c0) < pK+1γK+1, then
under the KL-LCB policy, for any small δ such that 0 < δ <
min{pK+1γK+1 − pi(c1 − c0), piγi − pK+1γK+1}, we have

P
[
q̃i(t) ≥

pK+1γK+1 − pi(c1 − c0) + δ

pi(c2 − c1)
infinitely often

]
= 0.

Proof of Lemma 5. Based on the KL-LCB policy, we have
q̃i(t) < q̃i(t− 1), if di is not requested at t, or di is requested
and is a cache hit at t. In other words, we could have q̃i(t) >
q̃i(t−1) only when di is requested at t and it is a cache miss.
And we will focus on such time stamps to prove the bound.

Without loss of generality, we prove this lemma for i = 1.
The same approach can be applied to any 1 ≤ i ≤ K. Define
events At and Bt as

At ={d1 is requested and missed at t,
and loaded into the cache after serving the request},

Bt =

{
q̃1(t) ≥

pK+1γK+1 − p1(c1 − c0) + δ

p1(c2 − c1)

}
∩At.

We claim that{{
q̃1(t) ≥

pK+1γK+1 − p1(c1 − c0) + δ

p1(c2 − c1)

}
infinitely often

}
⊆ {Bt infinitely often} (23)

almost surely, which can be verified by combining Lemma 4,
the update rule of the KL-LCB policy and the fact that
limt→+∞ p̂1(t) = p1 almost surely. Next, we will show that
Bt infinitely often happens with probability zero.

For a small ε > 0, we define events Ct, Dt, Et as

Ct = {p̂iγ̃i(t) ≤ pK+1γK+1 + δ/2 for ∀K + 1 ≤ i ≤ N},
Dt = {q̂1(t) ∈ (q1 − ε, q1 + ε)},
Et = {p̂1(t) ∈ (pi − ε, pi + ε)}.

Their complementary events are unlikely to happen. Specifi-
cally, we have

P[Cct infinitely often] = P[Dc
t infinitely often]

= P[Ect infinitely often] = 0. (24)

The equality holds for Cct because of Lemma 4, q̃i(t) ≤ q̂i(t)
and limt→+∞ p̂i(t) → pi almost surely. It holds for Dc

t

because of Lemma 4 and limt→∞ q̂1(t) = q1 almost surely. It
holds for Ect due to the strong law of large numbers.

Let σt = max{s : d1 is evicted at s, s < t}. We have Bt ⊆
{Bt ∩ Cσt ∩ Dt−1 ∩ Dt ∩ Eσt} ∪ Ccσt

∪ Dc
t−1 ∪ Dc

t ∪ Ecσt
.

In order to show P[Bt infinitely often] = 0, it is sufficient to
prove P[Bt ∩ Cσt

∩Dt−1 ∩Dt ∩ Eσt
infinitely often] = 0.

Based on the KL-LCB policy, the event Cσt ∩Eσt implies

(p1 − ε) · γ̃1(t− 1) < p̂1(σt)γ̃1(σt) < pK+1qK+1 + δ/2,

which is equivalent to

q̃1(t− 1) <
pK+1γK+1 − (p1 − ε)(c1 − c0) + δ/2

(p1 − ε)(c2 − c1)
.

Therefore, if Bt ∩ Cσt ∩Dt−1 ∩Dt ∩ Eσt happens, we have

DKL

(
q1 − ε,

pK+1γK+1 − (p1 − ε)(c1 − c0) + δ/2

(p1 − ε)(c2 − c1)

)
(a)

≤ DKL

(
q̂1(t− 1),

pK+1γK+1 − (p1 − ε)(c1 − c0) + δ/2

(p1 − ε)(c2 − c1)

)
≤ log f(t− 1)

Tmiss
1 (t− 1)

and

DKL

(
q1 + ε,

pK+1γK+1 − p1(c1 − c0) + δ

p1(c2 − c1)

)
≥ DKL

(
q̂1(t),

pK+1γK+1 − p1(c1 − c0) + δ

p1(c2 − c1)

)
≥ log f(t)

Tmiss
1 (t− 1) + 1

,
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where the inequality (a) holds because we can choose ε small
enough such that

q1 − ε >
pK+1γK+1 − (p1 − ε)(c1 − c0) + δ

(p1 − ε)(c2 − c1)
.

As a result, we have

log f(t− 1)

log f(t)
· T

miss
1 (t− 1) + 1

Tmiss
1 (t− 1)

≥
DKL

(
q1 − ε, pK+1γK+1−(p1−ε)(c1−c0)+δ/2

(p1−ε)(c2−c1)

)
DKL

(
q1 + ε, pK+1γK+1−p1(c1−c0)+δ

p1(c2−c1)

) ∆
= η. (25)

We could select ε small enough such that the constant η > 1.
Lemma 4 implies that the left-hand side of (25) converges

to 1 almost surely as t → +∞. Thus, the probability
that (25) happens infinitely often is zero, which indicates
P[Bt infinitely often] = 0. Combining this with (23) finishes
the proof.

Lemma 6. Under the KL-LCB policy, we have almost surely,
1) for 1 ≤ i ≤ K, if pi(c1 − c0) < pK+1γK+1, then

lim sup
t→+∞

Tmiss
i (t)

log t
≤ 1
/
DKL

(
qi,

pK+1γK+1 − pi(c1 − c0)
pi(c2 − c1)

)
,

if pi(c1−c0) ≥ pK+1γK+1, then limt→+∞ Tmiss
i (t)/ log t = 0,

2) for K + 1 ≤ i ≤ N , limt→+∞ T out
i (t)/t = 1.

Proof of Lemma 6. First, we consider the case for 1 ≤ i ≤
K and pi(c1 − c0) ≥ pK+1γK+1. Recall that γ̃i(t) =
q̃i(t)c2 + (1 − q̃i(t))c1 − c0. For this case, we have for
∀t > 0 and K + 1 ≤ j ≤ N , piγ̃i(t) > pi(c1 − c0) ≥
pK+1γK+1 ≥ pjγj . Based on Lemma 4, we have almost
surely that lim supt→∞ γ̃j(t) ≤ γj for K + 1 ≤ j ≤ N ,
implies that for 1 ≤ i ≤ K and K + 1 ≤ j ≤ N ,

P[p̂i(t)γ̃i(t) ≤ p̂j(t)γ̃j(t) infinitely often] = 0.

Therefore, di will be cached for all but finitely many time
slots almost surely, i.e., lim supt→+∞ Tmiss

i (t)/ log t = 0.
Next, we will focus on the case for 1 ≤ i ≤ K and pi(c1−

c0) < pK+1γK+1. Define DKL(p, q) = DKL(p, q) ·1(p ≥ q).
According to the definition of q̃i(t) in (4), we have

DKL(q̂i(t), q̃i(t)) = log f(t)/Tmiss
i (t).

Thus, Lemma 5 implies that for ∀δ > 0 and 1 ≤ i ≤ K,

P
[
DKL

(
q̂i(t),

pK+1γK+1 − pi(c1 − c0) + δ

pi(c2 − c1)

)
≥ log f(t)

Tmiss
i (t)

infinitely often
]
= 0.

which, combining with Lemma 4, yields

P
[
DKL

(
qi,

pK+1γK+1 − pi(c1 − c0) + δ

pi(c2 − c1)

)
≥ log f(t)

Tmiss
i (t)

infinitely often
]
= 0.

Therefore, we have almost surely, for 1 ≤ i ≤ K,

lim sup
t→∞

Tmiss
i (t)

log t
≤ 1
/
DKL

(
qi,

pK+1γK+1 − pi(c1 − c0)
pi(c2 − c1)

)
.

Next, we will focus on the case for K + 1 ≤ i ≤ N . Note
that for K + 1 ≤ i ≤ N , we have

T in
i (t) ≤

N∑
j=K+1

T in
j (t) ≤

K∑
j=1

T out
j (t), (26)

Combining (26) and the law of large numbers, we have almost
surely for K + 1 ≤ i ≤ N

lim
t→+∞

T out
i (t)

t
= lim
t→+∞

t− T in
i (t)

t
≥ 1− lim

t→+∞

∑K
j=1 T

out
j (t)

t

= 1− lim
t→+∞

∑K
j=1 T

miss
j (t)/pj

log t
· log t

t
= 1.

Lemma 7. Under the KL-LCB policy, for K + 1 ≤ i ≤ N ,
we have almost surely limt→∞ q̃i(t) = qi.

Proof of Lemma 7. Based on Lemma 4 and the strong
law of large numbers, we have limt→+∞ q̂i(t) =
qi almost surely. Moreover, Lemma 6 implies that
limt→+∞ log f(t)/Tmiss

i (t) = 0 almost surely for K + 1 ≤
i ≤ N . Thus, we have limt→∞ q̃i(t) = qi almost surely for
K + 1 ≤ i ≤ N .

Lemma 8. Under the KL-LCB policy, for 1 ≤ i ≤ K, ∀δ > 0
and t = 1, 2, 3, · · · , we have

P
[
q̃i(t) ≤

pK+1γK+1 − pi(c1 − c0)− δ
pi(c2 − c1)

infinitely often
]
= 0.

Proof of Lemma 8. First, if pi(c1 − c0) ≥ pK+1γK+1, then
the proof will be trivial, since q̃i(t) must be positive. Next,
we consider the case when pi(c1 − c0) < pK+1γK+1.

Define the time stamps σt and ωt as follows

σt = min

{
s > t : For any 1 ≤ i ≤ K,

q̃i(s) ≥
pK+1γK+1 − pi(c1 − c0)− δ/2

pi(c2 − c1)

}
,

ωt = min

{
s > t : ∃i, 1 ≤ i ≤ K,

q̃i(s) ≤
pK+1γK+1 − pi(c1 − c0)− δ

pi(c2 − c1)

}
. (27)

Define the event At as

At =

{
For any 1 ≤ i ≤ K,

q̃i(t) ≥
pK+1γK+1 − pi(c1 − c0)− δ/2

pi(c2 − c1)

}
.

Define the event Bt as

Bt = At ∩ {σt > ωt}.
According to Lemmas 4 and 6, we know that

P[At infinitely often] = 1. As a result, in order to prove this
lemma, it suffices to show

P[Bt infinitely often] = 0. (28)

Next, we will focus on Bt and prove this result.
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Choose δ ∈ (0, pK+1γK+1−pK+2γK+2). Define the events
Ct and Dt as

Ct ={p̂K+1(s)γ̃K+1(s) ∈ (pK+1γK+1 − δ/4,
pK+1γK+1 + δ/4) for ∀t ≤ s ≤ t2},

Dt ={p̂i(s)γ̃i(s) ≤ pK+1γK+1 − δ
for ∀t ≤ s ≤ t2 and ∀K + 2 ≤ i ≤ N}.

Lemma 7 and the strong law of large numbers imply that

P[Cct infinitely often] = P[Dc
t infinitely often] = 0. (29)

For a small ε > 0, define the events Et and Ft as

Et ={p̂i(s) ∈ (pi − ε, pi + ε) for ∀t ≤ s ≤ t2},
Ft ={q̂i(s) ∈ (qi − ε, qi + ε) for ∀t ≤ s ≤ t2}.

Lemma 4 and the strong law of large numbers imply that

P[Ect infinitely often] = P[F ct infinitely often] = 0. (30)

Combining (29), (30) and the fact that Bt ⊆ {Bt ∩Ct ∩Dt ∩
Et∩Ft}∪Cct ∪Dc

t ∪Ect ∪F ct , in order to show (28), it suffices
to prove

P[Bt ∩ Ct ∩Dt ∩ Et ∩ Ft infinitely often] = 0. (31)

First, assuming that {At ∩ Ft} happens, we will derive a
lower bound for ωt. According to the KL-LCB policy, we have

DKL(q̂i(t), q̃i(t)) = log f(t)/Tmiss
i (t)

for 1 ≤ i ≤ K and f(t) defined in (4), which implies

DKL

(
qi + ε,

pK+1γK+1 − pi(c1 − c0)− δ/2
pi(c2 − c1)

)
≥ DKL

(
q̂i(t),

pK+1γK+1 − pi(c1 − c0)− δ/2
pi(c2 − c1)

)
≥ log f(t)/Tmiss

i (t). (32)

Based on the definition of ωt in (27), at the time stamp ωt,
there exists an index j, 1 ≤ j ≤ K such that

q̃j(ωt) ≤
pK+1γK+1 − pj(c1 − c0)− δ

pj(c2 − c1)
.

Therefore, we have

DKL

(
qj − ε,

pK+1γK+1 − pj(c1 − c0)− δ
pj(c2 − c1)

)
≤ DKL

(
q̂j(ωt),

pK+1γK+1 − pj(c1 − c0)− δ
pj(c2 − c1)

)
≤ log f(ωt)

Tmiss
j (ωt)

≤ log f(ωt)

Tmiss
j (t)

. (33)

Define

ηj =
DKL

(
qj − ε, pK+1γK+1−pj(c1−c0)−δ

pj(c2−c1)

)
DKL

(
qj + ε,

pK+1γK+1−pj(c1−c0)−δ/2
pj(c2−c1)

) .
Combining (32) and (33) yields, for 1 ≤ j ≤ K,

log f(ωt)

log f(t)
=

log(1 + ωt(logωt)
2)

log(1 + t(log t)2)
≥ ηj .

Define η = min1≤j≤K ηj . We can select ε small enough, such
that η > 1. Let t = τ1 be the unique solution to (log t)η =
η log t. For t > τ1, ωt could be lower bounded by

ωt > tη.

Next, we will show that if there are sufficiently many
requests for di, 1 ≤ i ≤ K, arriving during the time interval
[t, tη], then the event {Bt∩Ct∩Dt∩Et∩Ft} will not happen.
In particular, select θi,t as

θi,t =

 log f(tη)

DKL

(
qi − ε, pK+1γK+1−pj(c1−c0)−δ/2

pi(c2−c1)

)
 .

Assume that {Ct∩Dt∩Et∩Ft} happens. We can select δ small
enough such that η ∈ (1, 2). So the time interval [t, tη] could
be covered by the interval [t, t2] considered in the events Ct,
Dt, Et, Ft. If there are θi,t misses happen for di, 1 ≤ i ≤ K,
in the time interval [t, tη], we have

DKL

(
qi − ε,

pK+1γK+1 − pi(c1 − c0)− δ/2
pi(c2 − c1)

)
≥ log f(tη)

θi,t
≥ log f (tη)

Tmiss
i (tη)

.

⇒ DKL

(
q̂i
(
tη
)
,
pK+1γK+1 − pi(c1 − c0)− δ/2

pi(c2 − c1)

)
≥ log f (tη)

Tmiss
i (tη)

.

⇒ q̃i
(
tη
)
≥ pK+1γK+1 − pi(c1 − c0)− δ/2

pi(c2 − c1)
.

Therefore, if there are θi,t misses for each di, 1 ≤ i ≤ K, in
the time interval [t, tη], then we will have σt ≤ tη < ωt, i.e.,
the event {Bt ∩ Ct ∩Dt ∩ Et ∩ Ft} will not happen.

Leveraging this result, we could divide the time interval
[t, tη] into

∑K
i=1 θi,t + 1 small chunks with equal length. It

can be verified that {Bt∩Ct∩Dt∩Et∩Ft} will not happen,
if dK+1 is requested in the first chunk and data items di,
1 ≤ i ≤ K, are requested at least once in each of the remaining
chunks. This claim can be verified based on the following
observations. When {Ct ∩Dt ∩ Et ∩ Ft} happens, we have
1) di, K + 2 ≤ i ≤ N will be cache misses and never loaded
into the cache in the time interval [t, tη] because of Dt.
2) If dK+1 is not loaded into the cache when it is requested in
the first chunk, or if it is loaded into the cache but then evicted
before tη , let t′ denote the timestamp when this happens and
we must have σt ≤ t′ ≤ tη < ωt, i.e., the event {Bt ∩ Ct ∩
Dt ∩ Et ∩ Ft} does not happen.
3) If the condition in 2) does not happen, then in each chunk
except the first one, a cache miss must occur for some di,
1 ≤ i ≤ K.
4) If for some di, 1 ≤ i ≤ K, there are more than θi,t misses
happen in the interval [t, tη], then let t′ denote the timestamp
when the (θi,t+1)’th miss happens. We have σt ≤ t′ ≤ tη <
ωt, i.e., the event {Bt ∩Ct ∩Dt ∩Et ∩ Ft} will not happen.
5) If the condition in 4) does not happen, then based on 3),
each di, 1 ≤ i ≤ K will have exactly θi,t misses in [t, tη],
and therefore, the event {Bt ∩ Ct ∩ Dt ∩ Et ∩ Ft} will not
happen.
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In other words, if the event {Bt∩Ct∩Dt∩Et∩Ft} happens,
then either dK+1 is not requested in the first chunk, or there
exist a data item di, 1 ≤ i ≤ K, that is not requested in at
least one of the remaining chunks. With this conclusion, we
can derive the following bound

P[Bt ∩ Ct ∩Dt ∩ Et ∩ Ft]
≤ P[dK+1 is not requested in the first chunk]

+ P
[

Exist some 1 ≤ i ≤ K, 2 ≤ m ≤
K∑
j=1

θj,t + 1,

such that di is not requested in the mth chunk
]

≤ (1− pK+1)
l(t) +

K∑
i=1

(1− pi)l(t) ·
K∑
i=1

θi,t.

where l(t) = (tη − t)/(∑K
i=1 θj,t + 1) is the length of each

time chunk. Since η > 1 and θi,t = O(log t), we have

+∞∑
t=1

P[Bt ∩ Ct ∩Dt ∩ Et ∩ Ft] < +∞,

which, based on the Borel-Cantelli Lemma, implies (31) and
completes the proof.

Lemma 9. Under KL-LCB based policy, for 1 ≤ i ≤ K, if
pi(c1 − c0) < pK+1γK+1, then we have almost surely

lim inf
t→+∞

Tmiss
i (t)

log t
≥ 1
/
DKL

(
qi,

pK+1γK+1 − pi(c1 − c0)
pi(c2 − c1)

)
.

The proof of Lemma 9 is similar to the proof of Lemma 6,
and is omitted due to the page limit.

Now we are ready to prove Lemma 3. First, we have

lim
t→+∞

q̃i(t) =
pK+1γK+1 − pi(c1 − c0)

pi(c2 − c1)
, (34)

for 1 ≤ i ≤ K almost surely due to Lemmas 5 and 8. Note
that the KL-LCB based policy attempts to cache the data items
with the largest p̂i(t)γ̃i(t). Thus, combining Lemmas 6, 7, 9,
Equation (34) and the strong law of large numbers, we have

lim
t→+∞

T in
K+1(t)

log t
= lim
t→+∞

∑K
i=1 T

out
i (t)

log t

= lim
t→+∞

∑K
i=1 T

miss
i (t)/pi

log t

=

K∑
i=1

1

DKL

(
qi,

pK+1γK+1−pi(c1−c0)
pi(c2−c1)

)
pi
,

almost surely. Convergence almost surely implies convergence
in probability. Therefore, we have, for ∀ε ∈ (0, 1),

lim
t→∞

P

[
T in
K+1(t)

log t
≥

K∑
i=1

1− ε
DKL

(
qi,

pK+1γK+1−pi(c1−c0)
pi(c2−c1)

)
pi

]
= 1. (35)

Therefore, we have for ∀ε ∈ (0, 1),

E
[
T in
K+1(t)

]
log t

≥ P

T in
K+1(t)

log t
≥

K∑
i=1

1− ε
DKL

(
qi,

pK+1γK+1−pi(c1−c0)
pi(c2−c1)

)
pi


· E
[
T in
K+1(t)

log t

∣∣∣T in
K+1(t)

log t

≥
K∑
i=1

1− ε
DKL

(
qi,

pK+1γK+1−pi(c1−c0)
pi(c2−c1)

)
pi


≥ P

T in
K+1(t)

log t
≥

K∑
i=1

1− ε
DKL

(
qi,

pK+1γK+1−pi(c1−c0)
pi(c2−c1)

)
pi


·
K∑
i=1

1− ε
DKL

(
qi,

pK+1γK+1−pi(c1−c0)
pi(c2−c1)

)
pi
. (36)

Combining (35) and (36) yields

lim inf
t→+∞

E
[
T in
K+1(t)

]
log t

≥
K∑
i=1

1

DKL

(
qi,

pK+1γK+1−pi(c1−c0)
pi(c2−c1)

)
pi
.

Furthermore, it is easy to observe that T in
K+1(t) ≤∑K

i=1 T
out
i (t), because at any time there are at most K data

items are cached. Thus, combining Lemma 2 and the strong
law of large numbers, we have

lim sup
t→+∞

E
[
T in
K+1(t)

]
log t

≤ lim sup
t→+∞

K∑
i=1

E [T out
i (t)]

log t

≤
K∑
i=1

1

DKL

(
qi,

pK+1γK+1−pi(c1−c0)
pi(c2−c1)

)
pi
.

Combining the upper and the lower bounds yields

lim
t→+∞

E
[
T in
K+1(t)

]
log t

=
K∑
i=1

1

DKL

(
qi,

pK+1γK+1−pi(c1−c0)
pi(c2−c1)

)
pi
,

which, together with Lemma 2 and the fact that∑K
i=1 T

out
i (t) ≥ T in

K+1(t), finishes the proof of Lemma 3.
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