
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Optimal Edge Caching For Individualized Demand
Dynamics

Guocong Quan, Atilla Eryilmaz, Senior Member, IEEE, Ness B. Shroff, Fellow, IEEE

Abstract—The ever-growing end user data demands, and the
reductions in memory costs are fueling edge-caching deploy-
ments. Caching at the edge is substantially different from that at
the core and needs to consider the nature of individualized data
demands. For example, an individual user may not be interested
in requesting the same data item again, if it has recently requested
it. Such individualized dynamics are not apparent in the aggre-
gated data requests at the core and have not been considered
in popularity-driven caching designs for the core. Hence, these
traditional caching policies could induce significant inefficiencies
when applied at the edges. To address this issue, we develop new
edge caching policies optimized for the individualized demands
that also leverage overhearing opportunities at the wireless edge.
With the objective of maximizing the hit ratio, the proposed
policies will actively evict the data items that are not likely to be
requested in the near future, and strategically bring them back
into the cache via overhearing when they become popular again.
Both theoretical analysis and numerical simulations demonstrate
that the proposed edge caching policies could outperform the
popularity-driven policies that are optimal at the core.

Index Terms—edge caching, broadcasting, overhearing

I. INTRODUCTION

Data demands are growing exponentially, driven by the
rapid proliferation of edge devices such as the Internet of
Things (IoT), and increasingly capable hand-held devices.
Meanwhile, memory is becoming cheaper, larger, and faster.
These two forces are creating an ideal environment for the
large-scale deployment of edge caching to support fast data
retrieval [1]–[4]. While, extensive studies [5]–[8] have been
conducted to optimize caching strategies for relatively station-
ary data demands at the network core, caching at the edges due
to its individualized demand dynamics, is quite different from
the core, and therefore should be studied in their own right.
In this paper, we will propose new caching policies optimized
for the individualized data demands at the wireless edges.

A. Challenge: Individualized Demands at Network Edges
At the network core, data demands are aggregated from

a large number of end-users, as shown in Fig. 1. Thus, the

The authors are with The Ohio State University, Columbus, OH 43210,
USA (emails: {quan.72, eryilmaz.2, shroff.11}@osu.edu). This work was
supported by NSF grants NSF AI Institute (AI-EDGE) 2112471, CNS-NeTS-
2106679, CNS-NeTS-2007231, CNS-2312836, CNS-2223452, CNS-2225561,
CNS-2106933, CNS-2106932, an ONR Grant N00014-19-1-2621, a grant
from the Army Research Office W911NF-21-1-0244, and was sponsored
by the Army Research Laboratory under Cooperative Agreement Number
W911NF-23-2-0225. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Army Research Laboratory
or the U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation herein.

demand dynamics of each individual user could become negli-
gible, which leads to relatively stationary data popularities for
the population. Various popularity-driven policies have been
proposed for optimizing caching at the core [6], [9]. Inspired
by the observation that data items recently requested by one
user are very likely to be requested again by others, the least
recently used (LRU) policy estimates the popularity by the data
recency and caches the most recently requested data items. The
LRU policy and its variants have been widely implemented at
the core, and validated to achieve good performance [10]–[12].

Fig. 1: Caching at the core v.s. caching at the edge.

In contrast, edge caching serves a small group of users, or
even a single user, where the data demands are more individu-
alized. Those have fundamentally different dynamics than the
population demand models. In particular, after requesting a
data item, the user may not be likely to request the same data
item again in the near future. One supportive reason is that
users may lose interest in seeing similar content repeatedly.
A common methodology applied by recommendation systems
is to avoid presenting similar content consecutively [13]–
[15]. Another evidence is that users may need some time
to process the recently requested data. A trace analysis on
Yelp has demonstrated considerable time gaps between users’
actions [16]. Hence, data popularities at the edges could
change dramatically even after every request. The popularity-
driven policies designed for the core cannot make adaptive
decisions for such individualized demands, and may achieve
poor performance at the edges.

In Fig. 2, we illustrate an example showing that the LRU
policy could make irrational decisions for edge caching, since
the recently requested data items typically have small pop-
ularities at the edges, which is opposite to the experience
at the core. Assume that an individual user will not request
the same data item in the near future after each request1.

1The data requests are generated with N = 1000, b = 50, si =
5000, βi = c · i−1.4, c = 1/

∑N
i=1 i

−1.4 = 0.3392, 1 ≤ i ≤ N , where the
detailed parameter definitions are introduced in Section II-A

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

Fig. 2: Degenerate performance of LRU when serving a small
group of users.

We simulate the hit ratio achieved by a single LRU cache
serving aggregated data requests from a group of users. The
LRU policy achieves good performance when the number of
users is large (i.e., the network core scenario). However, the
performance degenerates significantly as the number of users
decreases (i.e., the network edge scenario). Interestingly, when
the cache serves one user, the hit ratio will decrease to zero,
which indicates that the LRU policy almost always makes the
wrong decisions.

B. Solution: Active Eviction and Strategical Overhearing
To address this issue, we develop new adaptive edge caching

policies customized for the individualized demands. In an ideal
case, the policy should frequently update the cache content and
only store data items that are most likely to be requested in
the near future. We will leverage the overhearing opportunities
at the wireless edges to mimic this ideal design.

Specifically, an edge cache can overhear the broadcasted
data items over the wireless channels, even when it is not
the intended receiver. To achieve high caching efficiency, we
may actively evict the recently requested data items that will
not be needed in the near future, and strategically bring them
back into the cache later through overhearing when their
popularities rise up sufficiently again. With the objective to
maximize the overall hit ratio, we optimize the eviction and
overhearing decisions for two different settings depending on
how the overhearing opportunities are generated. Under the
time-driven overhearing setting (cf. Section III), the overhear-
ing opportunities are described by Poisson processes that are
independent of the data requests and out of the designer’s
control. Under the event-driven overhearing setting (cf. Sec-
tion IV), the overhearing opportunities are generated when an
item is requested and is unavailable at a user, which triggers
its broadcast over the wireless channel, hereby generating an
overhearing opportunity for all other users. Our contributions
are summarized as follows.
• With the objective to maximize the overall hit ratio,

we propose an optimal caching and overhearing policy
for the time-driven overhearing setting. Specifically, we
first prove that the hit ratio maximization problem is
nonconvex. By exploiting an informative structure of
the optimal solutions, we then convert the nonconvex
problem to a convex one and propose efficient algorithms
to solve it (see Section III).

• We propose an asymptotically optimal caching and over-
hearing policy for the event-driven overhearing setting.
Although the overhearing process is not fully tractable
under this setting, we are inspired by the structure of
the optimal policy under time-driven overhearing and
propose a policy for event-driven overhearing, which is
asymptotically optimal when the number of edge caches
in the system is sufficiently large (see Section IV).

• We extend our main results for both time-driven and
event-driven overhearing scenarios to a more general
data demand setting, where different users can have
heterogeneous demand patterns (see Section V).

• We conduct extensive simulations to validate that the
proposed policies can achieve better performance than
a few benchmarks (see Section VI).

C. Related Works

Conventional caching analysis for stationary data demands
typically assumes an independent reference model (IRM),
where the data requests are assumed to be generated from
a stationary popularity distribution independently. Popularity
driven caching policies are proposed for such scenarios in
different systems [6], [17]. Historical request information
including data recency and frequency are commonly leveraged
to estimate the popularity, and inspire the design of LRU, LFU,
LIRS and other variants [9], [18]–[21]. Among the various
caching policies, the time-to-live (TTL) based policies have
garnered significant attention, since they are not only easy
to implement in real practice, but also provide tractability
and flexibility to optimize different system goals [22]–[25].
However, how to design a good TTL-based policy for edge
caching with individualized demand dynamics still lacks a
systematic study.

To characterize the non-stationary data demands whose
popularities may evolve over time, a shot noise model (SNM)
is proposed in [26], where the request process of a data
item is described by a time-inhomogeneous Poisson process.
Compared to IRM, SNM could better characterize the temporal
locality and is validated by real data traces collected from
more than 10000 IPs. However, under the general SNM, the
theoretical analysis of some caching strategies may become
intractable. To address this issue, an ON-OFF traffic model is
proposed in [27], which captures time-variant data popularities
and supports efficient analysis for a number caching strategies.
An age-based threshold (ABT) caching policy is proposed for
small user populations under SNM [28].

Numerous studies have explored methods for tracking dy-
namic data demands and optimizing caching decisions to
achieve better efficiency [29]–[33]. However, they are different
from this paper in the following aspects. 1) Existing works
typically consider the aggregated demands from a group of
users and attempt to track the dynamic demands over a rela-
tively long time period by collecting historical requests from
different users. The individualized demands that could change
dramatically in a short time period (e.g., after each request
for the data item) have not been well addressed by existing
works. 2) These works did not explore the joint optimization

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

of overhearing and caching decisions when demands are dy-
namically changing. In this paper, we fill the gap by proposing
a new model to describe the individualized demand dynamics
and designing new edge caching policies that achieve provably
better performance by leveraging overhearing opportunities at
the wireless edges.

Another prevalent category of dynamics in caching prob-
lems is the content dynamics, where each data item could
be occasionally refreshed, rendering older versions obsolete.
Different caching strategies have been explored to optimize
caching efficiency and content freshness [34]–[36]. We note
that such content dynamics are different from the demand dy-
namics investigated in this paper, because the data popularity
changes under content dynamics are triggered by the refresh
of content sources, while popularities under demand dynamics
are changing with users’ actions (e.g., recent requests). Fur-
thermore, edge caching with overhearing opportunities have
been shown great potential to improve energy efficiency,
transmission delays and data freshness [37]–[41], but these
designs didn’t consider the individualized demand dynamics.

II. MODEL DESCRIPTION

In this section, we will first formally model the edge demand
dynamics by ON-OFF processes. Then we will introduce TTL
based caching and overhearing policies and formulate a hit
ratio maximization problem.

Fig. 3: Edge caching with individual data demand.

A. Individual Demand Dynamics

Consider M edge caches connected to a base station through
wireless channels, as shown in Fig. 3. Each edge cache serves
data requests from a single user. We use m, 1 ≤ m ≤ M ,
to index an edge cache or the user served by the edge cache
interchangeably. Let {di, 1 ≤ i ≤ N} denote a set of N
distinct data items. Assume that the data items are of unit size
and each edge cache has a size of b, 0 < b ≤ N . Each edge
cache serves an individual user independently. If the requested
data is stored in the cache, then the request could be served
immediately with a low latency, which is called a cache hit.
Otherwise, the requested data has to be obtained from the
backend data storage and sent back to serve the user’s demand,
which is called a cache miss.

To characterize the demand dynamics of individual users,
we model the requests for the data item di, 1 ≤ i ≤ N ,
generated by each user as a renewable ON-OFF process.
Specifically, after the user requests di, he/she will not request
it again within si units of time, which is the OFF period.
The OFF period can effectively capture the transfer of user

interests as well as the time gaps between users’ actions as
demonstrated by a trace analysis on Yelp [16]. After the OFF
period, the next request for di will be generated based on a
Poisson process with rate βi, which is the ON period. Without
loss of generality, we assume that the data items are indexed
such that βi’s are decreasing with respect to i. When a new
request is generated in the ON period, a subsequent OFF
period starts immediately and the ON-OFF process is renewed.

For example, Fig. 4 illustrates a sequence of requests for
the data item d1 with s1 = 2 and β1 = 1. The first request
for d1 is initiated at epoch 0. After the first request, there is
an OFF period of a fixed duration 2, during which, the user
is not interested in requesting d1. Starting from epoch 2, the
first OFF period ends, ushering in an ON period, where the
user would request d1 again. Within the ON period, the next
request for d1 will be generated based on a Poisson process
with a rate β1 = 1. In this example, the next request occurs
at epoch 4, at which time, the second OFF period starts and
the whole process is renewed.

Fig. 4: Individualized demands characterized by renewable
ON-OFF processes.

The proposed renewable ON-OFF process describes how a
user’s demand for a data item will evolve based on the user’s
recent requests for it. The proposed model could characterize
different demand patterns depending on the value of si
• When 0 < si < +∞, the data item won’t be requested

again in the near future, if the user has recently made
a request for it. However, over time, the user might
regain interest in it. For example, music within a playlist
typically follow this demand pattern.

• When si = +∞, di will never be requested again
after the first request for it. For example, the weather
information for today is rarely in demand beyond the
current day.

• When si = 0, the requests for data item di will be
generated following a Poisson arrival process with a con-
stant rate βi, which indicates that users are consistently
interested in such data items. This setting corresponds
to the conventional accumulated demand patterns at the
network core.

In this paper, we assume that the parameters si and βi are fixed
and known, and focus on how we should update the edge cache
content for a set of candidate data items with different demand
patterns (i.e., different βi, si values). In real practice, si and βi
could be unknown and different approaches could be applied
to estimate them. As an illustration, we can employ clustering
algorithms to group users with similar interests, enabling us
to leverage the observed historical requests from similar users
to estimate parameters for others [29].

In the main paper, we consider the homogeneous demand
dynamics, where different users have the same request pattern
(i.e., si, βi only depend on the data item di and are identical

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

for different users). This setting is particularly relevant to
scenarios where individual users have common data interests
(e.g., on-trend music and TV series). The homogeneous setting
helps us focus on the impact of individualized demands at the
network edge as opposed to the aggregated demands at the
network core. Later, in Section V, we will show that most
of the theorems and insights obtained for the homogeneous
setting are also valid when users have heterogeneous demands.

B. Overhearing Opportunities

To improve the edge caching efficiency under such dynamic
data demands, we will leverage overhearing opportunities
over the wireless channels. Specifically, the base station can
broadcast data items from time to time. When the cache
overhears a data item, it may decide to store it or not based on
the adopted caching and overhearing policies. Since the users
are assumed to have common data interests, the overheard data
item could potentially satisfy the demand of multiple users,
and therefore, improves the caching efficiency. Note that the
privacy concerns or the data encryption are not considered
in this paper. Developing efficient edge caching policies with
privacy protection is a crucial avenue for future research.
However, this topic falls outside the scope of this paper.

In this paper, we will investigate optimal caching and over-
hearing policy under the following two different overhearing
scenarios depending on how the overhearing opportunities are
generated.
Scenario 1 (Time-driven overhearing): In this scenario, we
assume that the base station will broadcast each data item
based on independent Poisson processes with given fixed
rates. The caches could passively overhear and need to decide
whether to store the overheard data items. Note that the over-
hearing processes in this scenario are fixed and independent of
caching decisions. The time-driven overhearing opportunities
are given by the environment and our goal is to find good
policies to leverage these opportunities. This simple setting
could provide us informative insights to optimize caching
decisions with overhearing opportunities, which inspires the
policy design for more realistic settings in Scenario 2.
Scenario 2 (Event-driven overhearing): In this scenario, we
consider a more realistic setting. When a cache miss happens
for some data item, e.g., d1, the base station will fetch d1

from the backend storage and send it back to the cache over the
broadcast channel. Meanwhile, the other caches could overhear
d1 and decide whether to cache it or not. Unlike time-driven
overhearing, the event-driven overhearing opportunities are not
fixed or given by the environment. They are shaped by the
miss behaviors, which, in turn, are determined by the caching
policies. Thus, the policy design for this scenario is more
challenging.

C. TTL-Based Caching and Overhearing Policies

To achieve as many hits as possible, the key question to
answer is how to update the cache content. In this paper,
we consider the design where each data item can be updated
separately based on its own rule. Formally, we use a vector
π = (π1, π2, · · · , πN) to denote the policy for managing the

N data items, where each element πi is the update rule for a
data item di, 1 ≤ i ≤ N . To avoid possible confusion, we call
π a policy and each πi an item policy.

First, consider the item policies that belong to the following
TTL based caching and overhearing item policy set. Define

Πco = {πco(τ, ω) : ω ≥ τ ≥ 0}, (1)

where an item policy πco(τ, ω) is determined by two pa-
rameters, i.e., the caching TTL τ and the deaf TTL ω. The
superscript “co” stands for caching and overhearing.

In particular, assume that the data item di is served by the
item policy πco(τi, ωi). Then every time the data item di is
requested, it will be loaded into the cache regardless of a hit
or a miss. Meanwhile, a caching timer with duration τi and
a deaf timer with duration ωi (ωi ≥ τi) will be initiated. In
Fig. 5, we illustrate an item policy πco(τ1, ω1) for d1 with
τ1 = 3 and ω1 = 7.

1) Until the caching timer expires, di will be cached but
promptly evicted once the timer runs out. In Fig. 5, d1

will be cached during the period [0, 3] and evicted at
epoch 3.

2) Before the deaf timer expires, the cache refrains from
loading di into cache via overhearing. In Fig. 5, although
d1 is broadcasted at epoch 5, it will not be loaded into
cache based on the chosen policy.

3) After the deaf timer expires, the cache will opportunis-
tically store di via overhearing when it is broadcasted.
Once a request for di is generated and fulfilled, both two
timers will be reset, and the procedure will be renewed to
serve the next request. In Fig. 5, d1 will be overheard and
loaded into the cache at epoch 8, if the second request
for d1 is not generated before epoch 8.

Fig. 5: TTL-based caching and overhearing policy.

It is easy to observe that whether the next request for di is
a hit or a miss depends on when it arrives. We still use the
example in Fig. 5 to illustrate this process.

1) Request before eviction: If the second request for d1

arrives before the caching timer expires (i.e., epoch 3),
then it is a cache hit since d1 has not been evicted yet.

2) Request during the deaf period: If the second request
for d1 arrives in the period [3, 7], then a cache miss
occurs. To serve the request, d1 has to be fetched from
the backend storage.

3) Request before overhearing: If the second request for d1

arrives in the period [7, 8], then d1 is still a cache miss.
4) Request after overhearing: If the second request for d1

arrives after epoch 8, then it is a cache hit and the request
can be served from the cache.

Note that how to strategically choose τi and ωi parameters
is crucial to efficiently utilize the limited cache space. For
example, if ωi is very large, the next request for di is very

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

likely to be generated before the deaf period expires, and the
hit ratio will be low. Instead, if ωi takes a small value, we
could overhear and load it into the cache at the very early
stage, but it would be a waste of cache space if di will not be
requested in the near future.

To further expand the design space, we allow randomization
for the item policies. Let

Πrco ∆
={

πrco((q(1), · · · , q(n)
)
,
(
τ (1), · · · , τ (n)

)
,
(
ω(1), · · · , ω(n)

))
:

0 ≤ q(j) ≤ 1,

n∑
j=1

q(j) = 1, 0 ≤ τ (j) ≤ ω(j),

1 ≤ j ≤ n, n ∈ N
}

denote the set of all possible randomized item policies based
on Πco, where the superscript “rco” stands for randomized
caching and overhearing. Each randomized item policy is a
randomization of n deterministic item policies in Πco, where
n could be any positive integer and q(j) is the probability to ap-
ply the j-th deterministic item policy πco(τ (j), ω(j)). Suppose
di is served by πrco(qi, τ i,ωi) with qi = (q

(1)
i , · · · , q(n)

i),
τ i = (τ

(1)
i , · · · , τ (n)

i) and ωi = (ω
(1)
i , · · · , ω(n)

i). Every time
the data item di is requested, a deterministic item policy
πco(τ

(j)
i , ω

(j)
i) will be selected with a probability q

(j)
i and

applied to update the cache content, 1 ≤ j ≤ n. Notably,
each item di can be served by its customized item policy with
carefully-selected parameters qi, τ i and ωi. And the caching
decisions for different data items are independent. Thus, we
can analyze the hit ratio of each data item separately. Since
the caches are homogeneous, we assume that the item policies
for the same data item are identical on difference caches.

D. Hit Ratio Maximization

For each data item di, 1 ≤ i ≤ N , we define its expected
hit ratio achieved by an item policy πi on an edge cache as

hi(πi)

∆
= E

[
lim
T→∞

Number of hits for di during [0, T] under πi
Number of requests for di during [0, T]

]
.

Let pi denote the probability that a request is for data item di,
1 ≤ i ≤ N , which can be calculated as

pi =
1

si + 1/βi

/
N∑
j=1

1

sj + 1/βj
. (2)

Since the demand dynamics are homogeneous across different
caches, the overall expected hit ratio of all M caches is equal
to the expected hit ratio of a single cache, which can be
expressed by

∑N
i=1 pihi(πi). We would like to maximize the

overall expected hit ratio under the cache capacity constraint.
For an edge cache, define the expected cache occupancy for
di as

ri(πi)
∆
= E

[
lim
T→∞

1

T
·
(
Duration when di is stored

in the cache during [0, T]
)]
,

which characterizes the average cache space used for storing
di. The cache capacity constraint states that the expected cache
occupancy of all data items should not exceed the cache size.
Notably, the cache capacity constraint considers the average
cache occupancy rather than the real-time cache occupancy.
We adopt the cache capacity constraint in an average sense
for the following reason:
• It simplifies the analysis of the hit ratio maximization

problem, which enables us to design efficient caching
policies with provable performance.

• The caching policy obtained under the average cache
capacity constraint could be easily generalized to satisfy
to real-time cache capacity constraint with minor perfor-
mance regressions. For example, if loading an overheard
item into cache will violate the real-time cache capacity
constraint, we have the option to reject the operation.

Formally, we propose the hit ratio maximization problem

max
πi

N∑
i=1

pi · hi(πi) (3)

subject to πi ∈ Πrco, 1 ≤ i ≤ N,
N∑
i=1

ri(πi) ≤ b.

The objective is to maximize the overall hit ratio of an
edge cache by selecting the optimal item policy for each
data item from the item policy set Πrco. Since the demand
dynamics are homogeneous across different caches, applying
the optimal policy of the proposed problem to all M caches
should maximize the overall hit ratio of the entire system.

Note that the optimal caching policies will not change over
time, instead it captures the statistics of the demand dynamics
and maximizes the expected overall hit ratio. However, if the
statistics used to characterize the demand dynamics (i.e., si
and βi) are time varying, it would necessitate the optimal
policy to change over time. Such a topic, however, falls outside
the scope of this paper’s discussion. Next, we will investigate
this problem under the two different overhearing settings, i.e.,
time-driven and event-driven overhearing.

III. EDGE CACHING WITH TIME-DRIVEN OVERHEARING

In this section, we consider the time-driven overhearing
scenario where the overhearing processes of the users are gov-
erned by independent processes. This is particularly relevant
to scenarios where the base station broadcasts the items at
a regular rate. In particular, we assume that the overhearing
opportunity of the data item di is a Poisson process with
rate λi, 1 ≤ i ≤ N . Each cache may decide to load the
overheard item into its cache or not, depending on the caching
and overhearing policy.

A. Hit Ratios and Cache Occupancies

Since the caches are homogeneous and the overhearing
process is independent of the number of caches, it suf-
fices to analyze the system with a single cache. To sim-
plify the notations, we use hco

i (τi, ωi)
∆
= hi(π

co(τi, ωi)) and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

rco
i (τi, ωi)

∆
= ri(π

co(τi, ωi)) to denote the expected hit ratio
and cache occupancy of the data item di, if it is served by
the deterministic item policy πco(τi, ωi). In Theorem 1, we
characterize hco

i (τi, ωi) and rco
i (τi, ωi) explicitly.

Theorem 1. For time-driven overhearing, if the data item di
is served by a deterministic item policy πco(τi, ωi) ∈ Πco, we
have
(1) for τi ≤ ωi ≤ si,

hco
i (τi, ωi) = 1− βi

λi + βi
exp(−λi(si − ωi)),

rco
i (τi, ωi) =

1

E[Xi]

(βi
λi(λi + βi)

exp(−λi(si − ωi))

+ si − ωi −
1

λi
+

1

βi

)
,

(2) for τi ≤ si ≤ ωi,

hco
i (τi, ωi) =

λi
λi + βi

exp(−βi(ωi − si)),

rco
i (τi, ωi) =

1

E[Xi]
· λi
βi(λi + βi)

exp(−βi(ωi − si)),

(3) for si ≤ τi ≤ ωi,

hco
i (τi, ωi) = 1− exp(−βi(τi − si))

+
λi

λi + βi
exp(−βi(ωi − si)),

rco
i (τi, ωi) = 1 +

1

E[Xi]
·
(λi
βi(λi + βi)

exp(−βi(ωi − si))

− 1

βi
exp(−βi(τi − si))

)
,

where Xi is defined as the inter-request time for di and
E[Xi] = si + 1/βi.

The proof of Theorem 1 is presented in Appendix A. Note
that for a fixed τi < si, hco

i is concave with respect to ωi
when ωi < si − τi and convex when ωi ≥ si − τi. Therefore,
the original problem (3) is a nonconvex optimization problem,
which is difficult to solve in general. However, for this specific
problem, we could find the global optimum by exploiting an
informative structure of the optimal solution, which will be
presented in Section III-B.

Next, we will leverage Theorem 1 to calculate the expected
hit ratio and cache occupancy for randomized item policies.
Consider a randomized item policy πrco

i (qi, τ i,ωi) for the data
item di with qi = (q

(1)
i , · · · , q(n)

i), τ i = (τ
(1)
i , · · · , τ (n)

i),
ωi = (ω

(1)
i , · · · , ω(n)

i). Let hrco
i and rrco

i denote the expected
hit ratio and the expected cache occupancy achieved by πrco

i .
We derive the explicit expression for hrco

i and rrco
i in the

following theorem.

Theorem 2. For time-driven overhearing, if the data item di
is served by a randomized item policy πrco(qi, τ i,ωi), then
we have

hrco
i (qi, τ i,ωi) =

n∑
j=1

q
(j)
i · h

co
i (τ

(j)
i , ω

(j)
i),

rrco
i (qi, τ i,ωi) =

n∑
j=1

q
(j)
i · r

co
i (τ

(j)
i , ω

(j)
i),

where hco
i (τ

(j)
i , ω

(j)
i), rco

i (τ
(j)
i , ω

(j)
i) can be explicitly charac-

terized by Theorem 1.

It is shown that the expected hit ratio and cache occupancy
of a randomized item policy can be calculated as the linear
combination of the ones of its basic policies.

B. Informative Structure of Optimal Policies

In this section, we will prove a special structure of the
optimal caching and overhearing policies, which significantly
simplifies the optimization problem. Intuitively, for each data
item, an item policy utilizes the cache space as the resource
to achieve a high hit ratio which can be viewed as the
revenue. Thus, to evaluate how efficient an item policy is,
a straightforward approach is to characterize the relationship
between the hit ratio and the cache occupancy achieved by it.

For each data item di, the hit ratio and the cache occupancy
that can be achieved by some item policy in the set Πrco can be
described by an achievable region in a two-dimensional space.
Formally, define the achievable region for the data item di as

Rco
i = {(r, h) : there exists πi ∈ Πrco such that
πi achieves a cache occupancy r and a hit ratio h for di}.

To better characterize the achievable region Rco
i , we inves-

tigate two specific item policies. Define

πc(τ)
∆
= πco(τ,∞) and πo(ω)

∆
= πco(0, ω).

The caching-only item policy πc(τ) is a specific case of
πco(τ, ω) with a caching TTL τ and an infinite overhearing
TTL, i.e., never overhearing. The overhearing-only item policy
πo(ω) is also a specific case with an overhearing TTL ω and
a caching TTL zero, i.e., evicting the item immediately after
serving its request.

If we restrict the item policy to be selected from the item
policy set {πc(τ) : τ ≥ 0} or {πo(ω) : ω ≥ 0}, then the
achievable region will degenerate to a curve, since it can
be parameterized in one variable (i.e., τ or ω, respectively).
Therefore, the hit ratio achieved by πc(τ) and πo(ω) can be
viewed as a function of the cache occupancy. Formally, for
each data item di, define

hc
i(r)

∆
= hco

i (τi,+∞) and ho
i (r)

∆
= hco

i (0, ωi),

where τi is selected such that rco
i (τi,+∞) = r, and ωi is

selected such that rco
i (0, ωi) = r. For an item di, hc

i(r)
(respectively, ho

i (r)) is the expected hit ratio achieved by
the item policy πc(τi) (respectively, πo(ωi)) such that the
average cache space used to store di is r. The hc

i(r) and ho
i (r)

functions can be easily derived based on Theorem 1. We plot
these two functions in Fig. 6.

Note that, by setting τi = +∞, the item policy πc(τi)
can achieve its maximal hit ratio 1 and the maximal cache
occupancy 1. Under this setting, the data item will always be
stored in the cache. By setting ωi = 0, the item policy πo(ωi)
can achieve its maximal hit ratio ho

i (r
co
i (0, 0)) = hco

i (0, 0),
which is smaller than 1. The reason is that the request of di
may arrive before the overhearing opportunities even when
we set ωi = 0. Based on Theorem 2, any points on the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Overhearing only

Caching only

Achieved by

randomization

Fig. 6: Hit ratio and cache occupancy achieved by the caching-
only item policies and the overhearing-only item policies with
si = βi = λi = 1.

line segment connecting (1, 1) and (rco
i (0, 0), hco

i (0, 0)) can
be achieved by a randomization of πc(+∞) and πo(0).

Formally, we define a randomized caching and overhearing
item policy set

Π̃rco = {πo(ω) : ω ≥ 0}
∪ {πrco((q, 1− q), (+∞, 0), (+∞, 0)) : 0 ≤ q ≤ 1}. (4)

The item policy set Π̃rco contains all overhearing-only item
policies and all possible randomizations of πc(+∞) and πo(0).
The achievable region of Π̃rco can also be characterized by a
curve. We define the hrco

i (r) function as the hit ratio achieved
by an item policy from Π̃rco when the cache occupancy is
r. For r ∈ [0, rco(0, 0)], we have hrco

i (r) = ho
i (r). For

r ∈ (rco(0, 0), 1], hrco
i (r) is the line segment connecting the

points (rco
i (0, 0), hco

i (0, 0)) and (1, 1). In Fig. 6, hrco
i (r) is

the curve labeled by “overhearing only” and the line segment
achieved by randomization. Notably, every point on the curve
hrco
i (r) corresponds to exact one policy in the set Π̃rco, and vice

versa. Based on Theorems 1 and 2, we can easily calculate
the parameters (i.e., ω, q) for an item policy from Π̃rco that
achieves a given hit ratio or cache occupancy.

Next, we show an insightful characteristic of the achievable
region Rco

i .

Lemma 1. For any (r, h) ∈ Rco
i , we have h ≤ hrco

i (r).

The proof is presented in Appendix B. Lemma 1 shows
that the upper boundary of the achievable region Rco

i is
characterized by the function hrco

i (r), based on which, we can
prove an informative structure of the optimal policies.

Theorem 3. For time-driven overhearing, there must exist a
caching and overhearing policy π∗ = (π∗1 , · · · , π∗N) which is
the optimal solution of problem (3) and satisfies π∗i ∈ Π̃rco for
any 1 ≤ i ≤ N .

Theorem 3 is a direct application of Lemma 1. It shows
that an optimal solution of problem (3) can be found from
the set Π̃rco, which significantly narrows the design space.
By leveraging this informative structure, we solve the optimal
caching and overhearing policy in the next section.

C. Optimal Policy for Time-Driven Overhearing

Directly replacing the policy set in problem 3 with Π̃rco will
still result in a nonconvex optimization. Instead, we will solve

this problem by following two steps.
Step 1: Solve the optimal r∗i ’s of the following problem (5)

max
ri

N∑
i=1

pi · hrco
i (ri) (5)

subject to 0 ≤ ri ≤ 1, 1 ≤ i ≤ N,
N∑
i=1

ri ≤ b.

Note that the original problem (3) is trying to find the optimal
policy parameters (i.e., q, τ and ω). In Step 1, the original
optimization problem in the domain of policy parameters is
converted into a new problem in the domain of the cache
occupancies (i.e., r). Recall that hrco

i (ri) captures the rela-
tionship between the hit ratio and the cache occupancy for
item policies in the set Π̃rco. Using Theorem 3, we can prove
that the optimal occupancies found by problem (5) are actually
the occupancies achieved by the optimal item policies of the
original problem (3). More importantly, Theorems 1 and 2
indicate that the hrco

i (r) functions are concave, 1 ≤ i ≤ N .
Therefore, the optimization problem (5) is convex and can
be solved using standard tools (e.g., KKT conditions and the
water-filling algorithm [42]).
Step 2: Once the optimal solution r∗i ’s of Step 1 is solved,
then based on Theorems 1 and 2, we can easily find the
item policies from the set Π̃rco that achieve r∗i ’s. And these
item policies form an optimal solution of the original hit ratio
maximization problem (3). We use ω∗i ’s and q∗i ’s to denote
the parameters for these item policies. An optimal policy for
time-driven overhearing is formally proposed as follows.
Caching and overhearing policy for time-driven overhear-
ing (πT): Serve each data item di, 1 ≤ i ≤ N , by a ran-
domized item policy πrco(qi, τ i,ωi) where qi = (q∗i , 1− q∗i),
τ i = (+∞, 0) and ωi = (+∞, ω∗i).

The proposed optimal policy reveals the following insights:
1) We should either evict a data item immediately after

serving a request for it (i.e., set τi = 0) or always store
it in the cache (i.e, set τi = +∞). Setting τi ∈ (0,+∞)
will be suboptimal.

2) If we decide to bring an item back into the cache by
overhearing (i.e., set ωi < +∞), then that item should
be evicted immediately after serving each request for it
(i.e., set τi = 0).

These insights will guide us in the more complex scenario of
event-driven overhearing, which is tackled next.

IV. EDGE CACHING WITH EVENT-DRIVEN OVERHEARING

In this section, we consider a more realistic overhearing
setting. When a cache miss happens, the data item will be
fetched from the backend and sent to the user over broadcast
channels. Meanwhile, the other caches could overhear and
decide whether they would like to store this data item. Since
the overhearing opportunities are triggered by cache misses,
the event-driven overhearing process depends on the caching
decisions as well as the number of caches in the system. It can
be easily verified that the overhearing process are not Poisson
under this setting. As a result, the analysis for time-driven

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Overhearing only

Caching only

Achieved by

randomization

Fig. 7: Hit ratio and cache occupancy achieved by the caching-
only item policies and the overhearing-only item policies with
si = βi = 1 and M = 10.

overhearing cannot be directly applied for the event-driven
scenario.

A. Hit Ratios and Cache Occupancies

It is difficult to derive the hit ratio and the cache occupancy
for a general caching and overhearing policy, since the over-
hearing process is not tractable under this setting. However, we
are able to characterize a few key properties for some specific
policies, which inspires us to design a provably good policy.

Similar to the notations in Section III, we still use ho
i (·),

hc
i(·), hco

i (·), hrco
i (·) to denote the hit ratios achieved by the

item policies πo, πc, πco, πrco for the data item di, respectively.
The same rules will also be applied to the notations for cache
occupancies. However, the expression of these functions will
be different from those in Section III, since the overhearing
processes have been changed.

Lemma 2. Consider the event-driven overhearing. If di is
served by the item policy πo(ωi), then we have

ho
i (r) = (βisi + 1)r

for 0 ≤ r ≤ ro
i (si). If di is served by the item policy πc(τi),

then its hit ratio and occupancy are exactly the same as those
achieved by πc(τi) for time-driven overhearing, and can be
directly calculated using Theorem 1.

In Lemma 2, we analyze the item policies πc(τi) and
πo(ωi) under event-driven overhearing. The proof is presented
in Appendix C. For the caching-only item policy πc(τi),
the hit ratio and the cache occupancy are exactly the same
as the ones under time-driven overhearing, since πc(τi) sets
ωi = +∞ and is independent of the overhearing process. For
the overhearing-only item policy πo(ωi), the hit ratio of di is
a linear function with respect to the cache occupancy when
0 ≤ r ≤ ro(si) = rco(0, si), or, equivalently when ωi ≥ si.
When ωi < si, the overhearing-only item policy becomes
intractable. We plot the hit ratio and the cache occupancy that
can be achieved by πo(ωi) with ωi ≥ si and πc(τi) with τi ≥ 0
in Fig. 7.

In Lemma 2 we characterize the relationship between hit
ratios and cache occupancies for event-driven overhearing, but
we are not able to analytically solve the parameter ωi that
achieves a given cache occupancy r. To address this issue,

we first assume that the policy parameter ωi to achieve any
r ≤ rco(0, si) is solvable. With this assumption, we will
propose provably good policies in Section IV-B. Then, in
Section IV-C, we will discuss how to implement these policies
in real practice without the proposed assumption.

B. Asymptotically Optimal Policy for Event-Driven Overhear-
ing

Although the hit ratio and the cache occupancy under event-
driven overhearing are not fully tractable, we could still design
provably good polices by leveraging the insights obtained
from the optimal structure under time-driven overhearing. The
general idea is to first construct a shrunken policy set, which
contains less item policies but retains some tractability under
event-driven overhearing. Then, we will find the best policy
from the shrunken policy set and analytically characterize its
performance.

For each data item di, 1 ≤ i ≤ N , define a policy set

Π̂rco
i = {πo(ωi) : ωi ≥ si}
∪ {πrco((qi, 1− qi), (+∞, 0), (+∞, si)) : 0 ≤ qi ≤ 1}. (6)

The set Π̂rco
i contains overhearing-only item policies πo(ωi)

with ωi ≥ si and all possible randomizations of πo(si) and
πc(+∞). The reason to construct such policy sets is that we
could characterize the relationship between hit ratios and cache
occupancies for these item policies based on Lemma 2. Instead
of solving the original problem (3), we would like to find
the best policy from the shrunken policy sets by solving the
following problem

max
πi

N∑
i=1

pi · hi(πi) (7)

subject to πi ∈ Π̂rco
i , 1 ≤ i ≤ N,

N∑
i=1

ri(πi) ≤ b.

Define ĥrco
i (r) as the hit ratio of di achieved by an item

policy from the set Π̂rco
i such that the cache occupancy is r.

We have ĥrco
i (r) = (siβi + 1)r for 0 ≤ r ≤ rco

i (0, si), and

ĥrco
i (r) =

1− (siβi + 1)rco
i (0, si)

1− rco
i (0, si)

· r +
siβir

co
i (0, si)

1− rco
i (0, si)

for rco
i (0, si) ≤ r ≤ 1. The ĥrco

i (r) curve is illustrated in
Fig. 7 as the line segments achieved by overhearing only and
randomization. Every point on the curve ĥrco

i (r) corresponds
an item policy in the set Π̂rco

i , and vice versa. To find the
best item policies from Π̂rco

i , we formulate the following
optimization problem.

max
ri

N∑
i=1

pi · ĥrco
i (ri) (8)

subject to 0 ≤ ri ≤ 1, 1 ≤ i ≤ N,
N∑
i=1

ri ≤ b.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

Since ĥrco
i (r) functions are concave, problem (8) is convex

and can be solved by the same approach that solves prob-
lem (5). Let r∗i ’s denote the optimal solution to problem (8).
We can easily identify the item policy from the set Π̂rco

i

that achieves r∗i , 1 ≤ i ≤ N . We propose a caching and
overhearing policy as follows.
Caching and overhearing policy for event-driven overhear-
ing (πE): Let each data item di, 1 ≤ i ≤ N , be served by the
item policy from the set Π̂rco

i that achieves the cache occupancy
r∗i , i.e., the solution of (8).

To analytically characterize the performance of the proposed
policy πE , we first introduce an upper bound for the achiev-
able hit ratio. For a system consisting of M caches, let h∗(M)
denote the overall hit ratio achieved by the optimal solution of
problem (3) under event-driven overhearing. In the following
lemma, we prove that h∗(M) is upper bounded by a constant
which is defined as hupper.

Lemma 3. Consider a system of M caches where each cache
has a size b. We have

h∗(M) ≤
K∑
i=1

pi + pK+1(βK+1sK+1 + 1)
(
b−

K∑
i=1

1

βisi + 1

)
∆
= hupper, (9)

where K is the integer such that

K∑
i=1

1

βisi + 1
≤ b <

K+1∑
i=1

1

βisi + 1
. (10)

The proof of Lemma 3 is presented in Appendix D. The
upper bound proposed in this lemma is actually the hit ratio
achieved by an idealized policy. The idealized policy assumes
that we could always overhear any data item at any time
and attempts to find the best overhearing time based on the
anticipated arrival time for the next request.

Let hE(M) denote the expected overall hit ratio achieved by
πE in a system consisting of M caches. We characterize the
distance between hE(M) and hupper in the following theorem.

Theorem 4. For the proposed policy πE and K defined in
Equation (10), we have, as the number of caches M → +∞,

0 ≤ h∗(M)− hE(M)

≤ hupper − hE(M) ≤ max
1≤i≤K+1

2
√

(βisi + 1)/M,

which implies that

lim
M→+∞

hE(M) = lim
M→+∞

h∗(M) = hupper.

In Appendix E, we prove Theorem 4 by showing that
the expected inter-overhearing time for each date item will
converge to zero as M goes to infinity. Theorem 4 tells us that
the proposed policy πE for event-driven overhearing setting
is asymptotically optimal as the number of caches goes to
infinity. Intuitively, as the number of caches in the system
increases, it will be more likely to overhear a data item.
The proposed policy could efficiently utilize the overhearing
opportunities and achieve asymptotically optimal performance.

C. Discussion on Implementation

Since the overhearing process is difficult to analyze, in order
to design provably good policies, we previously assumed in
Section IV-A that the cache occupancy achieved by the item
policy πo(ωi), ωi ≥ si, can be analytically solved. Based
on this tractability assumption, we propose and analyze πE

in Section IV-B. In this section, we will discuss how to
implement the proposed policies without this assumption.

First, we note that it is impractical to estimate the cache
occupancy for all possible πo(ωi)’s, since ωi can take any real
numbers. In contrast, we will show that a good performance
can be guaranteed by leveraging an accurate estimation of the
cache occupancy achieved by a specific item policy πo(si).

For the convex problem (8), KKT conditions show that the
optimal solution satisfies that

N∑
i=1

1(r∗i 6= ro
i (si) and 0 < r∗i < 1) ≤ 1, (11)

where ro
i (si) is the cache occupancy achieved by the

overhearing-only item policy πo(ωi) with ωi = si. It indicates
that there is at most one r∗i that takes a value other than ro

i (si),
0 and 1. In other word, except for one item policy, the other
item policies in the optimal solution must be the overhearing-
only item policy πo(si) or a randomization of πo(si) and
πc(+∞). As a result, we could further narrow down the policy
set by considering πo(si) and randomizations of πo(si) and
πc(+∞), i.e.,

{πrco((qi, 1− qi), (+∞, 0), (+∞, si)) : 0 ≤ qi ≤ 1}, (12)

Once we have a good estimation of ro
i (si), all item policies

in this set are tractable.
Therefore, to implement the caching and overhearing policy

πE proposed in Section IV-B, we could solve the hit ratio
maximization problem based on the policy set (12) rather than
the one defined in (6). The solved policy is an approximation
of πE . By applying (11), we can prove that the overall hit
ratio achieved by this approximated policy is within 1 − 1/b
fraction of πE , where b is the cache size.

The remaining problem is how to estimate ro
i (si) values. A

simple idea is to first run an estimation phase to approximate
ro
i (si) and then solve the modified policies using the estimated

values. In the estimation phase, for each data item di, we may
run πo(si) for T units of time, and estimate ro

i (si) by

r̄o
i (si) = (Duration of time when di is cached) /T.

The proposed implementation solution could introduce per-
formance losses compared to the original policy πE due to
the following two reasons:

1) The implemented policy is an approximation of πE by
considering the policy set (12) rather than (6).

2) The caching and overhearing decisions are biased since
the estimation r̄o

i (si) is not accurate.
However, these performance losses could be ignored as long
as the cache size b and the length of the estimation phase T
are sufficiently large.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

V. GENERALIZATION FOR HETEROGENEOUS DEMAND
DYNAMICS

In the main paper, we focus on the homogeneous demand
dynamics, where different users have the same demand pattern
(i.e., si, βi) for a given data item di. The obtained insights and
theorems can be easily generalized for heterogeneous demands
with minor modifications.

We use m, 1 ≤ m ≤M , to index an edge cache or the user
served by the corresponding edge cache interchangeably, since
each edge cache is assumed to serve a single user. Our first
step is to extend the proposed ON-OFF processes to allow
for different demand patterns of the same data item among
different users. For the user m, we use the proposed ON-OFF
process with a OFF-period length s(m)

i and ON-period request
rate β(m)

i to describe the demand dynamics of the data item
di. The popularity of di for user m can be evaluated by

p
(m)
i =

(
s

(m)
i + 1/β

(m)
i

)−1
/ N∑
j=1

(
s

(m)
j + 1/β

(m)
j

)−1
.

Define ν(m) as

ν(m) =

N∑
i=1

(
s

(m)
i + 1/β

(m)
i

)−1
/ M∑
m=1

N∑
i=1

(
s

(m)
i + 1/β

(m)
i

)−1
.

ν(m) represents the ratio of requests that are from user m. We
have

∑M
m=1 ν

(m) = 1.
Similar to the hit ratio and the cache occupancy defined in

Section II-D, we use h(m)
i (π) and r

(m)
i (π) to denote the hit

ratio and the cache occupancy of the data item di in the edge
cache m achieved by the item policy π, respectively.

Our goal is to find the optimal policy such that the overall hit
ratio of the entire system is maximized. We formally propose
the problem as follows.

max
π
(m)
i ,1≤m≤M,1≤i≤N

M∑
m=1

N∑
i=1

ν(m)p
(m)
i · h(m)

i

(
π

(m)
i

)
(13)

subject to π
(m)
i ∈ Πrco, 1 ≤ m ≤M, 1 ≤ i ≤ N,
N∑
i=1

r
(m)
i

(
π

(m)
i

)
≤ b, 1 ≤ m ≤M.

A. Time-Driven Overhearing
The time-driven overhearing process is independent of the

edge caching policy. Under time-driven overhearing, the cache
hit ratio and occupancy of an edge cache are determined by
its own policy and are independent of other caches. Therefore,
maximizing the overall hit ratio of the entire system is equiva-
lent to maximizing the hit ratio of each edge cache separately.
Formally, we can propose M sub-problems, where the m-th
problem is defined as follows.

max
π
(m)
i ,1≤i≤N

ν(m)p
(m)
i ·

N∑
i=1

h
(m)
i

(
π

(m)
i

)
(14)

subject to π
(m)
i ∈ Πrco, 1 ≤ i ≤ N,
N∑
i=1

r
(m)
i

(
π

(m)
i

)
≤ b.

Let {π(m)∗
i : 1 ≤ i ≤ N} denote the optimal solution of the

sub-problem (14), then {π(m)∗
i : 1 ≤ i ≤ N, 1 ≤ m ≤ M}

would be the optimal solution of the original problem (13).
Notably, solving the sub-problem (14) is equivalent to solving
problem (3) that was proposed for the homogeneous setting
previously. Therefore, our analysis for the homogeneous de-
mand setting in Section III is still valid for the heterogeneous
setting with time-driven overhearing. And the proposed πT

policy would be the solution to the sub-problem (14), where
the policy inputs si, βi are replaced by s(m)

i and β(m)
i .

B. Event-Driven Overhearing

The event-driven overhearing process becomes more com-
plicated when the demand dynamics are heterogeneous across
different edge caches. We are not able to split the original
overall hit ratio maximization problem to independent sub-
problems designed for each cache, since the policy for one
cache will impact the overhearing processes as well as the
optimal decision of other caches.

Due to the increased complexity, the policy πE proposed for
homogeneous demand dynamics cannot be directly extended
for heterogeneous settings. Fortunately, the key properties of
hit ratios and cache occupancies characterized in Lemma 2
are still valid for each edge cache. In particular, for the edge
cache m, Lemma 2 holds if we replace si, βi by s(m)

i , β(m)
i .

Similar to the idea of proposing policy πE for homogeneous
demands in Section IV, we will leverage Lemma 2 and the
informative structure characterized in Section III-B to design
a provably good policy.

For the cache m and the data item di, let ζ(i,m) be a
reordering of the data index, such that ζ(i,m) takes distinct
integer values in [1, N] for different input i, and β

(m)
ζ(i,m) ≥

β
(m)
ζ(j,m) for any 1 ≤ i < j ≤ N . Define the set of items
D(m) = {di : 1 ≤ ζ(i,m) ≤ K(m)}, where K(m) is an
integer such that

K(m)∑
i=1

1

β
(m)
ζ(i,m)s

(m)
i + 1

≤ b <
K(m)+1∑
i=1

1

β
(m)
ζ(i,m)s

(m)
i + 1

. (15)

We say the data item di is a popular data item for user m,
if ζ(i,m) ≤ K(m). Define Ci = {m : ζ(i,m) ≤ K(m)} to
be the set of users, for which di is a popular data item. We
propose the policy πE−O as follows.
Overhearing only policy for event-driven overhearing
(πE−O): For each edge cache m, apply the overhearing only
item policy πo(s

(m)
i) to serve the data item di, if di ∈ D(m).

Do not overhear or cache the data items that are not in D(m).
πE−O imitates the overhearing decisions of πE , which is

proposed for homogeneous demand dynamics in Section IV-B.
However, to simplify the analysis, πE−O forgoes the caching
only options of πE . For M caches under event-driven over-
hearing, let h∗(M) and hE−O(M) denote the overall expected
hit ratio achieved by the optimal policy and the proposed pol-
icy πE−O, respectively. Assume that β(m)

i is upper bounded
and define βmax = max1≤i≤N,1≤m≤M β

(m)
i . We can prove

that hE−O(M) is close to h∗(M).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

Theorem 5. For the proposed policy πE−O, we have

0 ≤ h∗(M)− hE−O(M)

≤ 1

b
+ max

1≤i≤N

2
√
βmax√∑

m∈Ci

(
s

(m)
i + 1/β

(m)
i

)−1
.

The proof of this theorem uses a similar approach that
proves Theorem 4, and therefore is omitted due to the
page limit. The detailed proof can be found in the tech-
nical report [43]. Theorem 5 indicates limM→+∞ h∗(M) −
hE−O(M) = 1/b, if we have, for any 1 ≤ i ≤ N

lim
M→+∞

∑
m∈Ci

(
s

(m)
i + 1/β

(m)
i

)−1 → +∞. (16)

Condition (16) states that as the user population grows, the
overall request rate for di from the user set Ci also keeps
increasing. Under such conditions, we would have more and
more overhearing opportunities as the user population in-
creases. Theorem 5 reveals an insight that near optimal caching
performance can be achieved by strategically leveraging the
overhearing opportunities (i.e., πE−O), if the demand of each
data item increases consistently when it is exposed to a larger
user population.

Unlike the policy πE that can achieve asymptotically opti-
mal performance for homogeneous demand settings, the policy
πE−O designed for heterogeneous settings always has a 1/b
hit ratio gap with the optimal policy. The reason is that
πE−O adopts an overhearing only mechanism and restricts
the overhearing TTL ω

(m)
i to take either value s(m)

i or +∞
for the ease of analysis. Considering that the cache size b is
typically large, πE−O achieves reasonably good performance.

VI. EVALUATION

We will validate the theoretical results by evaluating the
empirical performance of the proposed πT and πE policies
and comparing them with the following benchmarks:
• The optimal overhearing-only policy: this policy is the

solution of problem (3) with an additional constraint
τi = 0, 1 ≤ i ≤ N , and can be easily solved using
the same approach that solves πT and πE . The optimal
overhearing-only policy evicts the data item immediately
after a request for it.

• The optimal caching-only policy: this policy is the so-
lution of problem (3) with an additional constraint ωi =
+∞, 1 ≤ i ≤ N , and can be easily solved using standard
convex optimization tools. It turns out that the optimal
caching-only policy caches data items with the largest
long term popularities. and achieves better performance
than various conventional policies (e.g., LRU, LFU) un-
der the setting of this paper.

• LFU policy: the policy caches the most frequently used
data items, which is an approximation of the optimal
caching-only policy.

• LRU policy: the policy caches the most recently used data
items.

In Experiments 1 and 2, we evaluate the performance of
these policies under time-driven and event-driven overhearing
settings, respectively.

0.0 0.5 1.0 1.5 2.0 2.5
Overall overhearing rate

0.1

0.2

0.3

0.4

0.5

Ov
er

al
l h

it
ra

tio

Caching & overhearing
Caching only
Overhearing only
LFU
LRU

(a)

0 200 400 600 800 1000
Cache size

0.2

0.4

0.6

0.8

1.0

Ov
er

al
l h

it
ra

tio

Caching & overhearing
Caching only
Overhearing only
LFU
LRU

(b)

Fig. 8: Overall hit ratio with time-driven overhearing.

Experiment 1: In this experiment, we consider the time-
driven overhearing setting. Set b = 50, N = 1000, βi =
c·i−0.8 with c = 1/

∑N
i=1 i

−0.8 and si = 1/βi. Let λi = γ ·βi,
where γ =

∑N
i=1 λi is the overall overhearing rate. Since

the number of caches M does not impact the performance
for time-driven overhearing, we simply set M = 1. We
evaluate the overall hit ratios under different γ values and
depict the results in Figure 8a. It can be observed that
the proposed optimal caching and overhearing policy πT

always outperforms the other benchmarks. The overhearing-
only policy achieves similar performance as πT when γ is
large, which validates that when there are sufficient over-
hearing opportunities, the overhearing-only policy can achieve
near optimal performance. However, when γ is small, the
overhearing-only suffers a lot. The overall hit ratios achieved
by the caching-only policy, LFU and LRU are constant, since
they are independent of the overhearing process. LFU achieves
similar performance as the caching-only policy. However, LRU
achieves much worse performance, since the most recently
used data item may not be popular in the near future due to
the individualized demand dynamics.

Next, we fix γ = 1 and change the cache size b. The results
are plotted in Fig. 8b. The caching and overhearing policy πT

still outperforms the other benchmarks. As for the overhearing-
only policy, the hit ratio will be a constant less than 1, when
the cache size is larger than a threshold. The reason is that
the overall overhearing rate is too low, and cache is not full
even when we maximize the overhearing utilization (i.e., set
ωi = 0). As a result, further increasing the cache size will not
lead to a higher hit ratio. The caching-only policy, LFU and
LRU can achieve a hit ratio 1, when the cache is large enough
to store all items (i.e., b = N = 1000).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

0 10 20 30 40 50
Total number of caches

0.15

0.25

0.35

0.45

0.55

Ov
er

al
l h

it
ra

tio

Upper bound
Caching & overhearing
Caching only
Overhearing only
LFU
LRU

(a)

0 200 400 600 800 1000
Cache size

0.00

0.25

0.50

0.75

1.00

Ov
er
al
l h
it
ra
tio

Upper bound
Caching & overhearing
Caching only
Overhearing only
LFU
LRU

(b)
Fig. 9: Overall hit ratio with event-driven overhearing.

Experiment 2: In this experiment, we simulate the event-
driven overhearing. Consider N = 1000 data items with
βi = c · i−0.8, c = 1/

∑N
i=1 i

−0.8 and si = 1/βi for
1 ≤ i ≤ N . We evaluate the overall hit ratios achieved by
the proposed overhearing and caching policy πE as well as
other benchmarks, and compare them with the upper bound
of the optimal hit ratio derived in Equation (9). Note that the
policy πE is solved using an estimation phase with duration
10000 based on discussions in Section IV-C.

First, we set the cache size b = 50 and evaluate the hit
ratios for different numbers of caches. The results are plotted
in Figure 9a. The proposed caching and overhearing policy
always achieves the best performance. When M is small, the
overhearing-only policy achieves a much lower hit ratio than
the caching-only policy. When M is large, the overhearing-
only policy outperforms the caching-only policy. In addition,
the hit ratios achieved by the caching and overhearing policy
are getting closer to the upper bound hupper as M increases,
which validates the asymptotic optimality. LFU achieves sim-
ilar performance to the optimal caching-only policy and LRU
achieves the worst performance.

Next, we set M = 50 and evaluate the hit ratios for
different cache sizes. The results are presented in Figure 9b.
The proposed caching and overhearing policy πE always
achieves the best performance. When the cache size is less
than 500, the overhearing-only policy outperforms the caching-
only policy, because M is relatively large to generate sufficient
overhearing opportunities. However, for b > 500, when we
further increase the cache size, the overhearing-only policy
cannot achieve a larger hit ratio. At this time, the overhearing
opportunities become the bottleneck of the system, and the
cache space cannot be fully utilized due to the lack of
overhearing opportunities. In contrast, the proposed caching
and overhearing policy, the caching-only policy, LFU and LRU
can always benefit from a larger cache size.

VII. CONCLUSION

Edge caching typically serves a very small group of users
with individualized data demand. Hence, caching schemes for
an edge need to be substantially different from those at the
core that serves a large population of users. In this paper, we
developed new caching policies optimized for individualized
data demand at the wireless edges. With the objective to
maximize the overall hit ratio, we proposed to actively evict
the data items that are not likely to be requested in the near
future and bring them back into the cache through overhearing
when they become popular again. In particular, when the
overhearing opportunities are time-driven, the optimization
problem turns out to be non-convex. Nevertheless, by ex-
ploiting an informative structure of the optimal solution, we
converted the original problem to a convex one and found the
optimal policy πT . When the overhearing opportunities are
event-driven, the overhearing processes become intractable.
Still, inspired by the optimality structure of the time-driving
overhearing setting, we proposed a caching and overhearing
policy πE which is asymptotically optimal as the total number
of caches increases. Both theoretical and numerical results
verified that the caching policies designed specifically for
edges could substantially improve the caching efficiency and
outperform the policies designed for the core.

APPENDIX A
PROOF OF THEOREM 1

Let πc(τi) = πco(τi,+∞) denote a caching-only policy that
never overhears. Let hc

i(τi) and rc
i(τi) denote the expected

hit ratio and cache occupancy of the data item di when it is
served by the policy πc(τi). Similarly, we can define πo(ωi) =
πco(0, ωi), ho

i (ωi) and ho
i (ωi). We will establish the following

lemma before proving Theorem 1.

Lemma 4. The expected hit ratio and cache occupancy
achieved by πco(τi, ωi) with τi ≤ ωi can be calculated by
hco(τi, ωi) = hc

i(τi)+ho
i (ωi) and rco(τi, ωi) = rc

i(τi)+ro
i (ωi).

Proof of Lemma 4. Assume there is a request for the data item
di at time 0 and the next request for di will arrive at time
σ > si. We will first analyze the probability of having a cache
hit of di at time σ, as well as the expected time when di is
stored in the cache in the time interval [0, σ].

P[cache hit at time σ| di is served by πco(τi, ωi)]

= P[σ > si + ωi and di is overheard during [ωi, σ]]

+ P[σ ≤ si + τi]

P[cache hit at time σ| di is served by πc(τi)]

= P[σ ≤ si + τi]

P[cache hit at time σ| di is served by πo(ωi)]

= P[σ > si + ωi and di is overheard during [ωi, σ]].

Hence, we have

P[cache hit at time σ| di is served by πco(τi, ωi)]

= P[cache hit at time σ| di is served by πc(τi)]

+ P[cache hit at time σ| di is served by πo(ωi)],

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

which indicates hco(τi, ωi) = hc
i(τi)+ho

i (ωi), since the policy
is renewed after each data request.

Let T co, T c and T o denote the amount of time when di
is stored in the cache during [0, σ], if πco(τi, ωi), πc(τi) and
πo(ωi) are applied, respectively. We have T co = T c + T o,
which indicates rco(τi, ωi) = rc

i(τi) + ro
i (ωi).

Proof of Theorem 1. In order to prove Theorem 1, we will
derive the expected hit ratio and cache occupancy achieved
by πc(τi), π

o(ωi) in different parameter regions.
Case 1: τi ≤ ωi ≤ si
In this case, the cached data item di is evicted during the OFF
period. Thus, the caching-only policy πc(τi) always achieves
a 0 hit ratio and cache occupancy. For the overhearing-only
policy πo(ωi), without loss of generality, we assume that the
most recent request arrives at time 0. We will analyze the
probability that the next request for di is a hit, and its expected
cache occupancy. Let Xi denote the time when the next request
for di arrives, and Yi denote the time when we overhear di
for the first time after the deaf period. We have

ho
i (ωi) = P[The next request for di is a hit under πo(ωi)]

= P[Yi + ωi ≤ Xi]

= P[Yi + ωi ≤ si] + P[si < Yi + ωi ≤ Xi]

= 1− exp (−λi(si − ωi))

+ exp (−λi(si − ωi)) ·
λi

λi + βi

= 1− exp (−λi(si − ωi)) ·
β

λi + βi

The cache occupancy of πo(ωi) is

ro
i (ωi) =

1

E[Xi]
(P[Yi + ωi < si]

· E[Xi − Yi − ωi|Yi + ωi < si]

+ P[si < Yi + ωi ≤ Xi]

·E[Xi − Yi − ωi|si < Yi + ωi ≤ Xi])

=
1

E[Xi]

(
(1− exp(−λi(si − ωi)))

·
(

si − ωi
1− exp(−λi(si − ωi))

− 1

λi
+

1

βi

)
+ exp(−λi(si − ωi))

λi
λi + βi

1

βi

)
=

1

E[Xi]

(
si − ωi + exp(−λi(si − ωi))

βi
λi(λi + βi)

− 1

λi
+

1

βi

)
.

Case 2: τi ≤ si ≤ ωi
In this case, the expected hit ratio and cache occupancy of
the caching-only policy are all 0 similar to Case 1. For the

overhearing-only policy, we have

ho
i (ωi) = P[The next request for di is a hit under πo(ωi)]

= P[si < Yi + ωi ≤ Xi]

= exp (−λi(si − ωi)) ·
λi

λi + βi
,

ro
i (ωi) =

1

E[Xi]
P[si < Yi + ωi ≤ Xi]

· E[Xi − Yi − ωi|si < Yi + ωi ≤ Xi]

=
1

E[Xi]
exp(−λi(si − ωi))

λi
λi + βi

1

βi
.

Case 3: si ≤ τi ≤ ωi
In this case, ho

i (ωi) and ro
i (ωi) are exactly the same as those

in Case 2. As for πc(τi), we have

hc
i(τi) = P[The next request for di is a hit under πc(τi)]

= P[Xi ≤ τi]
= 1− exp(−βi(τi − si)).

The expected cache occupancy can be calculated as

rc
i(τi) =

1

E[Xi]
(P[Xi ≥ τi] · τi + P[Xi < τi] · E[Xi|Xi < τi])

=
1

E[Xi]
(P[Xi ≥ τi] · τi − P[Xi ≥ τi] · E[Xi|Xi ≥ τi]

+ P[Xi ≥ τi] · E[Xi|Xi ≥ τi]
+ P[Xi < τi] · E[Xi|Xi < τi])

=
1

E[Xi]
(−P[Xi ≥ τi] · E[Xi − τi|Xi ≥ τi] + E[Xi])

=
1

E[Xi]

1

βi
(1− exp(−βi(τi − si))).

Then applying Lemma 4 completes the proof.

APPENDIX B
PROOF OF LEMMA 1

The proof of Lemma 1 consists of two steps. In Step 1,
we will show that for τi ≤ si, there exists ω̃i such that
hco
i (τi, ωi) ≤ ho

i (ω̃i) and rco
i (τi, ωi) = ro

i (ω̃i); for τi > si,
there exists τ̃i such that hco

i (τi, ωi) ≤ hc
i(τ̃i) and rco

i (τi, ωi) =
rc
i(τ̃i). Next, in Step 2, we will show that the hrco

i (·) function
characterizes the upper boundary.
Step 1: For τi ≤ si, it is easy to observe that ω̃i = ωi
will satisfy the property. By applying Theorem 1, we can
verify that hco

i (τi, ωi) = hco
i (0, ωi) = ho

i (ω̃i) and rco
i (τi, ωi) =

rco
i (0, ωi) = ro

i (ω̃i).
For τi > si, we may first solve τ̃i as the unique solution

to the equation rco
i (τi, ωi) = rc

i(τ̃i). Then, we will prove that
hco
i (τi, ωi) ≤ hc

i(τ̃i). By applying Lemma 4, it is equivalent
to prove hc

i(τi) + ho
i (ωi) ≤ hc

i(τ̃i).
Since rco

i (τi, ωi) = rc
i(τi) + ro

i (ωi) = rc
i(τ̃i), we have

ro
i (ωi) = rc

i(τ̃i)− rc
i(τi) = (hc

i(τ̃i)− hc
i(τi)) /(βisi + 1),

where the second equation holds due to the fact that τ̃i >
τi > si and the linear relationship between hc

i and rc
i ,

which is illustrated in Fig. 6 and can be easily proved using
Theorem 1. Moreover, Theorem 1 also indicates that ro

i (ωi) ≥

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

ho
i (ωi)/(βisi + 1). Therefore, we have hc

i(τ̃i) − hc
i(τi) ≥

ho
i (ωi), which completes Step 1.

Step 2: First of all, we will show that for any randomized
item policy πrco(qi, τ i,ωi) with |qi| = |τ i| = |ωi| = n ≥ 2,
there exist q̃i, τ̃ i and ω̃i with |q̃i| = |τ̃ i| = |ω̃i| = 2, such
that hrco

i (qi, τ i,ωi) ≤ hrco
i (q̃i, τ̃ i, ω̃i) and rrco

i (qi, τ i,ωi) =
rrco
i (q̃i, τ̃ i, ω̃i).

The item policy πrco(qi, τ i,ωi) is a randomization of n de-
terministic item policies πco(τ

(j)
i , ω

(j)
i), 1 ≤ j ≤ n. As shown

in Fig. 10, we may plot the cache occupancies and the hit ratios
achieved by the deterministic item policies πco(τ

(j)
i , ω

(j)
i),

1 ≤ j ≤ n, in a two-dimensional Cartesian coordinate system
where the x-axis represents the cache occupancy and the y-
axis represents the hit ratio. Based on Theorem 2, the cache
occupancy and hit ratio achieved by any randomized item
policy πrco(qi, τ i,ωi) must be in the convex hull of these
n points (i.e., a convex polygon).

Fig. 10: Randomized policies achieving hit ratios and cache
occupancies in a convex polygon.

Next, we may find πrco(q̃i, τ̃ i, ω̃i) as the item policy that
maximizes the expected overall hit ratio, while the cache
occupancy is the same as the one achieved by πrco(qi, τ i,ωi).
We can observe that πrco

i (q̃i, τ̃ i, ω̃i) must be on the boundary
of the convex polygon and is achieved by the randomiza-
tion of two deterministic policies. For example, in Fig. 10,
πrco
i (q̃i, τ̃ i, ω̃i) is a randomization of πco(τ

(1)
i , ω

(1)
i) and

πco(τ
(4)
i , ω

(4)
i).

Therefore, for any item policy in the set Πrco, there must
exist an item policy from the set

Π̂rco ∆
=
{
πrco

((
q, 1− q

)
,
(
τ (1), τ (2)

)
,
(
ω(1), ω(2)

))
:

0 ≤ q ≤ 1, 0 ≤ τ (j) ≤ ω(j), 1 ≤ j ≤ 2
}
.

that achieves the same cache occupancy and a higher (or the
same) hit ratio. An item policy in the set Π̂rco is a random-
ization of two deterministic item policies πco(τ (1), ω(1)) and
πco(τ (2), ω(2)). We have Π̂rco ⊂ Πrco. Based on the result
of Step 1, we may know that the any point on the upper
boundary of Rrco

i must be achieved by a randomization of
an overhearing-only item policy πo(ωi) and a caching-only
item policy πc(τi) for some ωi ≥ τi ≥ 0. Based on the result
of Step 1, we can further conclude that for any item policy in
the set Πrco, there must exist an item policy from the set{

πrco ((q, 1− q) , (τ, 0) , (+∞, ω)) :

0 ≤ q ≤ 1, 0 ≤ τ ≤ +∞, 0 ≤ ω ≤ +∞
}

that achieves the same cache occupancy and a higher (or
the same) hit ratio. By applying Theorem 1, we can show
that ho

i (r) ≥ hc
i(r) for 0 ≤ r ≤ ro

i (0) and ho
i (r

o
i (0)) ≤

hc
i(r

c
i(+∞)) = 1. Therefore, for any item policy in the set

Πrco, there must exist an item policy from the set

Π̃rco ={πo(ω) : ω ≥ 0}
∪ {πrco((q, 1− q), (+∞, 0), (+∞, 0)) : 0 ≤ q ≤ 1}

that achieves the same cache occupancy and a higher (or the
same) hit ratio.

APPENDIX C
PROOF OF LEMMA 2

Consider the overhearing-only item policy πo(ωi) with ωi ≥
si under the event-driven overhearing setting. Without loss of
generality, we assume that the most recent request arrives at
time 0. We will analyze the probability that the next request
for di is a hit, and its expected cache occupancy. Let Xi denote
the time when the next request for di arrives, and Yi denote
the time when we overhear di for the first time after the non-
overhearing period (i.e., after time ωi). We have

ho
i (ωi) = P[The next request for di is a hit under πo(ωi)]

= P[Yi + ωi ≤ Xi]

The cache occupancy of πo(ωi) is

ro
i (ωi) =

1

E[Xi]
P[Yi + ωi ≤ Xi]

· E[Xi − Yi − ωi|Yi + ωi ≤ Xi]

=
1

E[Xi]
P[Yi + ωi ≤ Xi]

· E[E[Xi − Yi − ωi|Yi + ωi ≤ Xi]|Yi]

=
1

E[Xi]
P[Yi + ωi ≤ Xi] · E [1/βi|Yi]

=P[Yi + ωi ≤ Xi]/(siβi + 1).

Therefore, we have hoi (r) = (siβi + 1)r for ωi ≥ si, or
equivalently, for 0 ≤ r ≤ rco

i (0, si).
Since the caching-only item policy πc(τi) is independent of

the overhearing process, the hit ratio and the cache occupancy
are the same as those in time-driving scenarios.

APPENDIX D
PROOF OF LEMMA 3

We want to show that for a given cache size b, any
achievable overall hit ratio must be no larger than hupper.
Consider an idealized setting, where we can always overhear
di and store it in the cache, 1 ≤ i ≤ N , immediately after its
OFF period. Let hideal

i (r) be the expected hit ratio of di when
the cache occupancy is r under the overhearing only item
policy πo(ωi). hideal

i (r) is defined for 0 ≤ r ≤ 1/(βisi + 1).
We can show that hideal

i (r) = (βisi+ 1)r. Note that a hit ratio
1 and a cache occupancy 1/(βisi+1) are achieved by πo(si).

By applying Theorems 1 and 2, it is easy to prove that
for any (r, h) ∈ Rrco

i , we have h ≤ hideal
i (r). Therefore, the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

maximal overall hit ratio of problem (3) should not exceed the
maximal overall hit ratio of the following problem

max
ri

N∑
i=1

pi · hideal
i (ri) (17)

subject to 0 ≤ ri ≤ 1,1 ≤ i ≤ N,
N∑
i=1

ri ≤ b.

Based on Equation (2), we have pi · hideal
i (ri) = pi(βisi +

1)ri = βiri/(
∑N
j=1 1/(sj + 1/βj)). Since the data items are

sorted such that βi is decreasing with respect to i, the optimal
solution to problem (17) is to set ri = 1/(siβi+1) for 1 ≤ i ≤
K, rK+1 = b−

∑K
i=j 1/(sjβj + 1) and ri = 0 for i > K+ 1.

And the achieved optimal overall hit ratio is
K∑
i=1

pi + pK+1 (βK+1sK+1 + 1)
(
b−

K∑
i=1

1

βisi + 1

)
∆
= hupper,

which is an upper bound for the overall hit ratio that achieved
by any feasible solution to problem (3). Therefore, we have
h∗(M) ≤ hupper for ∀M > 0.

APPENDIX E
PROOF OF THEOREM 4

Consider M edge caches with event-driven overhearing
opportunities. Assume that the data item di is served by the
item policy πo(si). We define Hi as

Hi
∆
= lim
T→∞

Number of hits for di during [0, T]

Number of requests for di during [0, T]
.

We first introduce the following lemma, where the proof the
provided in the technical report [43].

Lemma 5. Consider M edge caches with event-driven over-
hearing opportunities. If the data item di is served by the item
policy πo(si), then we have 0 ≤ 1−Hi ≤ 2

√
(βisi + 1)/M

almost surely.

Proof of Theorem 4. First, define an overhearing only policy
as follows. Let the overhearing only element policy πo(si)
serve di, 1 ≤ i ≤ K, where K in defined in (10). Based on
the definition of K, we have

∑K
i=1 r

o
i (si) ≤ b, where ro

i (si)
is the cache occupancy of di under πo(si). We serve dK+1 by
πo(sK+1), if

∑K+1
i=1 ro

i (si) ≤ b. Otherwise, we serve dK+1

by πo(ωK+1), such that ro
K+1(ωK+1) = 1−

∑K
i=1 r

o
i (si). We

note that
• if dK+1 is served by πo(ωK+1) with ωK+1 6= sK+1

under the proposed overhearing only policy, then based
on Lemma 2, we have ho

i (ωK+1) > hupper
i , where hupper

i

is the hit ratio of di under the idealized policy defined in
Section IV-B;

• the proposed overhearing only policy cannot outperform
πE , since the overhearing only policy is a feasible
solution of problem (8), while πE is the optimal solution.

Let ho
i (M) = E[Hi] denote the expected hit ratio of di

achieved by the proposed overhearing only policy. By applying
Lemma 5 and the fact that Hi is bounded, we have

ho
i (M) ≥ 1− 2

√
(βisi + 1)/M.

Under the idealized policy proposed in Section IV-B, the
hit ratios for di, K + 1 < i ≤ N , must be zeros. Therefore,
we can conclude that

hupper − hE(M) ≤ hupper −
N∑
i=1

pih
o
i (M)

≤
K+1∑
i=1

pi(1− ho
i (M))

≤
K+1∑
i=1

2pi
√

(βisi + 1)/M

≤ max
1≤i≤K+1

2
√

(βisi + 1)/M.

REFERENCES

[1] F. Qian, K. S. Quah, J. Huang, J. Erman, A. Gerber, Z. Mao, S. Sen,
and O. Spatscheck, “Web caching on smartphones: ideal vs. reality,”
in Proceedings of the 10th international conference on Mobile systems,
applications, and services, 2012, pp. 127–140.

[2] D. Niyato, D. I. Kim, P. Wang, and L. Song, “A novel caching
mechanism for internet of things (iot) sensing service with energy
harvesting,” in 2016 IEEE International Conference on Communications
(ICC). IEEE, 2016, pp. 1–6.

[3] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. Leung, “Cache in the
air: Exploiting content caching and delivery techniques for 5G systems,”
IEEE Communications Magazine, vol. 52, no. 2, pp. 131–139, 2014.

[4] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Cooperative
content caching in 5G networks with mobile edge computing,” IEEE
Wireless Communications, vol. 25, no. 3, pp. 80–87, 2018.

[5] Q. Jia, R. Xie, T. Huang, J. Liu, and Y. Liu, “Efficient caching resource
allocation for network slicing in 5G core network,” IET Communica-
tions, vol. 11, no. 18, pp. 2792–2799, 2017.

[6] S. Li, J. Xu, M. Van Der Schaar, and W. Li, “Popularity-driven content
caching,” in IEEE INFOCOM 2016-The 35th Annual IEEE International
Conference on Computer Communications. IEEE, 2016, pp. 1–9.

[7] Q. Huang, K. Birman, R. Van Renesse, W. Lloyd, S. Kumar, and H. C.
Li, “An analysis of Facebook photo caching,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles, 2013,
pp. 167–181.

[8] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti, “Dynacache:
Dynamic cloud caching,” in 7th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 15), 2015.

[9] S. Jiang and X. Zhang, “Lirs: An efficient low inter-reference recency
set replacement policy to improve buffer cache performance,” ACM
SIGMETRICS Performance Evaluation Review, vol. 30, no. 1, pp. 31–
42, 2002.

[10] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab et al., “Scaling Memcache at
Facebook,” in 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13), 2013, pp. 385–398.

[11] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in Proceedings
of the 12th ACM SIGMETRICS/PERFORMANCE joint international
conference on Measurement and Modeling of Computer Systems, 2012,
pp. 53–64.

[12] P. R. Jelenković, “Asymptotic approximation of the move-to-front search
cost distribution and least-recently used caching fault probabilities,”
Annals of Applied Probability, pp. 430–464, 1999.

[13] G. Adomavicius and Y. Kwon, “Improving aggregate recommendation
diversity using ranking-based techniques,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 24, no. 5, pp. 896–911, 2011.

[14] N. J. Hurley, “Personalised ranking with diversity,” in Proceedings of
the 7th ACM Conference on Recommender Systems, 2013, pp. 379–382.

[15] X. Qian, D. Lu, Y. Wang, L. Zhu, Y. Y. Tang, and M. Wang, “Image
re-ranking based on topic diversity,” IEEE Transactions on Image
Processing, vol. 26, no. 8, pp. 3734–3747, 2017.

[16] J. Tadrous, A. Eryilmaz, and A. Sabharwal, “Action-based scheduling:
Leveraging app interactivity for scheduler efficiency,” IEEE/ACM trans-
actions on networking, vol. 27, no. 1, pp. 112–125, 2018.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

[17] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack, “Wave:
Popularity-based and collaborative in-network caching for content-
oriented networks,” in 2012 Proceedings IEEE INFOCOM Workshops.
IEEE, 2012, pp. 316–321.

[18] E. J. O’neil, P. E. O’neil, and G. Weikum, “The LRU-K page re-
placement algorithm for database disk buffering,” Acm Sigmod Record,
vol. 22, no. 2, pp. 297–306, 1993.

[19] E. Friedlander and V. Aggarwal, “Generalization of LRU cache replace-
ment policy with applications to video streaming,” ACM Transactions
on Modeling and Performance Evaluation of Computing Systems (TOM-
PECS), vol. 4, no. 3, pp. 1–22, 2019.

[20] N. Beckmann, H. Chen, and A. Cidon, “LHD: Improving cache hit rate
by maximizing hit density,” in 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), 2018, pp. 389–403.

[21] G. Quan, J. Tan, A. Eryilmaz, and N. Shroff, “A new flexible multi-flow
LRU cache management paradigm for minimizing misses,” Proceedings
of the ACM on Measurement and Analysis of Computing Systems, vol. 3,
no. 2, pp. 1–30, 2019.

[22] G. Domingues, G. Mendonça, E. D. S. E. Silva, R. M. Leão, D. S.
Menasché, O. Rottenstreich, M. Dehghan, and D. Towsley, “The role
of hysteresis in caching systems,” ACM Transactions on Modeling and
Performance Evaluation of Computing Systems (TOMPECS), vol. 6,
no. 1, pp. 1–38.

[23] A. Ferragut, I. Rodrı́guez, and F. Paganini, “Optimizing TTL caches un-
der heavy-tailed demands,” ACM SIGMETRICS Performance Evaluation
Review, vol. 44, no. 1, pp. 101–112, 2016.

[24] M. Dehghan, L. Massoulie, D. Towsley, D. S. Menasche, and Y. C. Tay,
“A utility optimization approach to network cache design,” IEEE/ACM
Transactions on Networking, vol. 27, no. 3, pp. 1013–1027, 2019.

[25] J. Jung, A. W. Berger, and H. Balakrishnan, “Modeling TTL-based
internet caches,” in IEEE INFOCOM 2003. Twenty-second Annual Joint
Conference of the IEEE Computer and Communications Societies (IEEE
Cat. No. 03CH37428), vol. 1. IEEE, 2003, pp. 417–426.

[26] S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, and
S. Niccolini, “Temporal locality in today’s content caching: why it mat-
ters and how to model it,” ACM SIGCOMM Computer Communication
Review, vol. 43, no. 5, pp. 5–12, 2013.

[27] M. Garetto, E. Leonardi, and S. Traverso, “Efficient analysis of caching
strategies under dynamic content popularity,” in 2015 IEEE conference
on computer communications (INFOCOM). IEEE, 2015, pp. 2263–
2271.

[28] M. Leconte, G. Paschos, L. Gkatzikis, M. Draief, S. Vassilaras, and
S. Chouvardas, “Placing dynamic content in caches with small popu-
lation,” in IEEE INFOCOM 2016-The 35th Annual IEEE International
Conference on Computer Communications. IEEE, 2016, pp. 1–9.

[29] D. T. Hoang, D. Niyato, D. N. Nguyen, E. Dutkiewicz, P. Wang, and
Z. Han, “A dynamic edge caching framework for mobile 5G networks,”
IEEE Wireless Communications, vol. 25, no. 5, pp. 95–103, 2018.

[30] K. Qi, S. Han, and C. Yang, “Learning a hybrid proactive and reactive
caching policy in wireless edge under dynamic popularity,” IEEE Access,
vol. 7, pp. 120 788–120 801, 2019.

[31] S. Kumar and R. Tiwari, “Optimized content centric networking for
future internet: dynamic popularity window based caching scheme,”
Computer Networks, vol. 179, p. 107434, 2020.

[32] J. Gao, S. Zhang, L. Zhao, and X. Shen, “The design of dynamic
probabilistic caching with time-varying content popularity,” IEEE Trans-
actions on Mobile Computing, vol. 20, no. 4, pp. 1672–1684, 2020.

[33] T. Zong, C. Li, Y. Lei, G. Li, H. Cao, and Y. Liu, “Cocktail edge caching:
Ride dynamic trends of content popularity with ensemble learning,”
IEEE/ACM Transactions on Networking, vol. 31, no. 1, pp. 208–219,
2022.

[34] B. Abolhassani, J. Tadrous, and A. Eryilmaz, “Single vs distributed edge
caching for dynamic content,” IEEE/ACM Transactions on Networking,
vol. 30, no. 2, pp. 669–682, 2021.

[35] M. Bastopcu and S. Ulukus, “Information freshness in cache updating
systems,” IEEE Transactions on Wireless Communications, vol. 20,
no. 3, pp. 1861–1874, 2020.

[36] S. Zhang, L. Wang, H. Luo, X. Ma, and S. Zhou, “Aoi-delay tradeoff
in mobile edge caching with freshness-aware content refreshing,” IEEE
Transactions on Wireless Communications, vol. 20, no. 8, pp. 5329–
5342, 2021.

[37] K. Poularakis, G. Iosifidis, V. Sourlas, and L. Tassiulas, “Exploiting
caching and multicast for 5G wireless networks,” IEEE Transactions on
Wireless Communications, vol. 15, no. 4, pp. 2995–3007, 2016.

[38] Y. Cui and D. Jiang, “Analysis and optimization of caching and multi-
casting in large-scale cache-enabled heterogeneous wireless networks,”

IEEE transactions on Wireless Communications, vol. 16, no. 1, pp. 250–
264, 2016.

[39] B. Zhou, Y. Cui, and M. Tao, “Optimal dynamic multicast scheduling for
cache-enabled content-centric wireless networks,” IEEE Transactions on
Communications, vol. 65, no. 7, pp. 2956–2970, 2017.

[40] M. M. Amiri and D. Gündüz, “Caching and coded delivery over gaussian
broadcast channels for energy efficiency,” IEEE Journal on Selected
Areas in Communications, vol. 36, no. 8, pp. 1706–1720, 2018.

[41] B. Abolhassani, J. Tadrous, and A. Eryilmaz, “Delay gain analysis of
wireless multicasting for content distribution,” IEEE/ACM Transactions
on Networking, vol. 29, no. 2, pp. 529–542, 2020.

[42] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[43] G. Quan, A. Eryilmaz, and N. Shroff, “Optimal edge caching for
individualized demand dynamics,” arXiv preprint arXiv:2310.14631,
2023.

Guocong Quan received the Ph.D. degree in electrical and computer engi-
neering from The Ohio State University in 2021. Then he joined Meta as
a research scientist. His research interest focuses on resolving challenges in
distributed networking and computing systems. He received the 2019 IEEE
INFOCOM Best Paper Award.

Atilla Eryilmaz (Senior Member, IEEE) received the M.S. and Ph.D. degrees
in electrical and computer engineering from the University of Illinois at
Urbana-Champaign in 2001 and 2005, respectively. From 2005 to 2007, he
worked as a Post-Doctoral Associate at the Laboratory for Information and
Decision Systems, Massachusetts Institute of Technology. Since 2007, he
has been with The Ohio State University, where he is currently a Professor
and the Graduate Studies Chair of the Electrical and Computer Engineering
Department. His research interests include optimal control of stochastic
networks, machine learning, optimization, and information theory. He received
the NSF-CAREER Award in 2010 and the two Lumley Research Awards for
Research Excellence in 2010 and 2015. He is a coauthor of the 2012 IEEE
WiOpt Conference Best Student Paper, subsequently received the 2016 IEEE
INFOCOM Best Paper Award, the 2017 IEEE WiOpt Best Paper Award, the
2018 IEEE WiOpt Best Paper Award, and the 2019 IEEE INFOCOM Best
Paper Awards. He has served as a TPC Co-Chair for IEEE WiOpt in 2014,
ACM MobiHoc in 2017, and IEEE INFOCOM in 2022; and an Associate
Editor for IEEE/ACM Transactions on Networking from 2015 to 2019 and
IEEE Transactions on Network Science and Engineering from 2017 to 2022.
He has been an Associate Editor of the IEEE Transactions on Information
Theory, since 2022.

Ness B. Shroff (Fellow, IEEE) received the Ph.D. degree in electrical engi-
neering from Columbia University, New York, NY, USA, in 1994. He joined
Purdue University, West Lafayette, IN, USA, immediately thereafter as an As-
sistant Professor with the School of Electrical and Computer Engineering. At
Purdue, he became a Full Professor of ECE and the Director of a University-
Wide Center on Wireless Systems and Applications in 2004. In 2007, he joined
The Ohio State University, Columbus, OH, USA, where he holds the Ohio
Eminent Scholar Endowed Chair in networking and communications, with
the Departments of ECE and CSE. He is currently the Institute Director of
the NSF AI Institute for Future Edge Networks and Distributed Intelligence.
He holds or has held Visiting (chaired) Professor positions with Tsinghua
University, Beijing, China, Shanghai Jiaotong University, Shanghai, China,
and the Indian Institute of Technology Bombay, Mumbai, India. He was the
recipient of numerous best paper awards for his research and is listed in
Thomson Reuters’ on The World’s Most Influential Scientific Minds, and has
been noted as a Highly Cited Researcher by Thomson Reuters in 2014 and
2015. He also was the recipient of the IEEE INFOCOM Achievement Award
for seminal contributions to scheduling and resource allocation in wireless
networks.

