
39

A New Flexible Multi-flow LRU Cache Management
Paradigm for Minimizing Misses

GUOCONG QUAN, The Ohio State University, USA

JIAN TAN, Alibaba Group, USA & The Ohio State University, USA

ATILLA ERYILMAZ, The Ohio State University, USA

NESS SHROFF, The Ohio State University, USA

The Least Recently Used (LRU) caching and its variants are used in large-scale data systems in order to provide

high-speed data access for a wide class of applications. Nonetheless, a fundamental question still remains open:

in order to minimize miss probabilities, how should the cache space be organized to serve multiple data flows?

Commonly used strategies can be categorized into two designs: pooled LRU (PLRU) caching and separated

LRU (SLRU) caching. However, neither of these designs can satisfactorily solve this problem. PLRU caching

is easy to implement and self-adaptive, but does not often achieve optimal or even efficient performance

because its set of feasible solutions are limited. SLRU caching can be statically configured to achieve optimal

performance for stationary workload, which nevertheless could suffer in a dynamically changing environment

and from a cold-start problem.

To this end, we propose a new insertion based pooled LRU paradigm, termed I-PLRU, where data flows can

be inserted at different positions of a pooled cache. This new design can achieve the optimal performance of the

static SLRU, and retains the adaptability of PLRU in virtue of resource sharing. Theoretically, we characterize

the asymptotic miss probabilities of I-PLRU, and prove that, for any given SLRU design, there always exists

an I-PLRU configuration that achieves the same asymptotic miss probability, and vice versa. We next design

a policy to minimize the miss probabilities. However, the miss probability minimization problem turns out

to be non-convex under the I-PLRU paradigm. Notably, we utilize an equivalence mapping between I-PLRU

and SLRU to efficiently find the optimal I-PLRU configuration. We prove that I-PLRU outperforms PLRU and

achieves the same miss probability as the optimal SLRU for stationary workload. Engineeringly, the flexibility

of I-PLRU avoids separating the memory space, supports dynamic and refined configurations, and alleviates

the cold-start problem, potentially yielding better performance than both SLRU and PLRU.

CCS Concepts: • Theory of computation → Caching and paging algorithms; • General and reference →
Performance; • Mathematics of computing→ Stochastic processes;

Keywords: Caching; LRU; Miss probability

ACM Reference Format:
Guocong Quan, Jian Tan, Atilla Eryilmaz, and Ness Shroff. 2019. A New Flexible Multi-flow LRU Cache

Management Paradigm for Minimizing Misses. In Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, 2, Article 39
(June 2019). ACM, New York, NY. 30 pages. https://doi.org/10.1145/3326154

This work is supported by the DTRA grants: HDTRA-14-1-0058, HDTRA1-15-1-0003, HDTRA1-18-1-0050, the NSF grants:

CMMI-SMOR-1562065, CNS-1446582, CNS-ICN-WEN-1719371, CNS-NeTS 1409336, CNS-NeTS-1514260, CNS-NeTS 1518829,

CNS-NeTS-1717045, CNS-NeTS-1717060, CNS-SpecEES-1824337, CSR-NeTS 1717060, and the ONR grant: N00014-17-1-2417.

Authors’ addresses: Guocong Quan, The Ohio State University, USA, quan.72@osu.edu; Jian Tan, Alibaba Group, USA &

The Ohio State University, USA, j.tan@alibaba-inc.com, tan.252@osu.edu; Atilla Eryilmaz, The Ohio State University, USA,

eryilmaz.2@osu.edu; Ness Shroff, The Ohio State University, USA, shroff.11@osu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2476-1249/2019/6-ART39 $15.00

https://doi.org/10.1145/3326154

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

https://doi.org/10.1145/3326154
https://doi.org/10.1145/3326154
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3341617.3326154&domain=pdf&date_stamp=2019-06-19

39:2 G. Quan, et al.

1 INTRODUCTION
With increasingly deployed data-intensive applications, the critical role of caching in accelerating

data access is becoming even more important. When a requested data item is found in the cache,

called a cache hit, it can be served fast. Otherwise, a cache miss occurs, causing a significantly longer
delay. A number of caching policies[5, 6, 11, 13, 20, 22, 23] have been proposed to update the data

items in the cache. Among them, the least recently used (LRU) policy or its variants [4, 19, 24, 27, 29]

are implemented as default [1, 2], owing to their simplicity and self-adaptive property [28]. For

LRU, data items are listed in descending order of their last requested times. Upon a data item

being requested, it is moved to the head of the list. If a miss occurs and the cache is full, the least

recently used data item(s), i.e., the one(s) at the end of the list, would be evicted from the cache to

accommodate the newly requested one.

A fundamental question still remains open: in order to minimize the miss probabilities, how should
the cache space be organized to serve multiple data flows? Commonly used strategies to organize LRU

caching can be categorized into two designs: pooled LRU (PLRU) caching and separated LRU (SLRU)

caching. For PLRU, the entire cache space is pooled as a single LRU cache and serves multiple

data flows by allowing complete cache sharing among the data flows. In contrast, for SLRU, the

cache space is separated into multiple LRU cache partitions, and each flow is served by a dedicated

partition.

Theoretical studies have been conducted to compare the performance of PLRU and SLRU [9, 26,

28] through characterizing the miss ratios of LRU caching [12, 13, 15–18, 25]. Remarkably, PLRU

caching enjoys a nice adaptivity property [23, 28], which often yields good performance for data

request flows that dynamically change over time. However, in a stationary setting, it is proven [9, 28]

that the optimal SLRU caching achieves asymptotic miss probabilities at least as good as PLRU

caching. In a general setting, it is reported that separating cache space is more advantageous [8].

However, due to lack of adaptivity, it is difficult for SLRU to retain the optimal performance when

data statistics, e.g., data item popularities and item request rates, are time-varying. This could cause

low utilization and inefficiency since the separated multiple cache partitions could be unbalanced.

Importantly, dynamically resizing these separate cache partitions incurs overhead, e.g., using

auto-mover for Memcached [1]. Specifically, a so-called cold-start problem [10] can deteriorate the

performance during a transition period immediately after resizing the cache (see Section 3.3 on the

cold-start problem). Other problems of dynamic resizing have also been reported, e.g., memory

fragmentation [3, 21, 30].

To mitigate these problems, we develop a new insertion based pooled LRU (I-PLRU) caching

paradigm. It achieves the optimal performance of static SLRU caching, provides more flexibility

with refined control, and alleviates the cold-start problem in dynamically changing environments.

For this new design, the cache space is pooled together and the data flows are inserted into the

cache from different positions along the ordered data item list (see Section 4.1 for the formal

definition). The miss probabilities can be optimized by configuring the insertion position of each

flow. Moreover, when arrival rates or popularity distributions of the data flows dynamically change

over time, the configuration can be easily adapted to retain the high efficiency.

Notably, the analysis of I-PLRU is more challenging than PLRU and SLRU. Different insertion

positions significantly complicate the way that the data flows interact with each other. More

concretely, 1) the maintained data item list is not completely sorted anymore; 2) the data items of

different flows could be organized in the same cache space through various ways to achieve more

refined control. Fortunately, we establish an equivalence mapping between I-PLRU and SLRU, based

on which, we rigorously characterize the asymptotic performance of I-PLRU, and prove that I-PLRU

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:3

can achieve the same miss probabilities as the optimal SLRU. We summarize our contributions as

follows.

Summary of contributions:

(1) We propose a new LRU cache management paradigm, termed I-PLRU, for multiple flows.

It can be flexibly configured to optimize various performance objectives, and effectively

alleviate the cold-start problem that hurts the performance of LRU caching during resizing.

(2) We rigorously characterize the asymptotic miss probability of I-PLRU caching. Under I-PLRU,

the data flows are coupled together in a complicated way. Existing analytical tools for LRU

caching cannot be directly applied. Instead, we overcome the difficulties by establishing an

equivalence mapping between I-PLRU and SLRU. Specifically, we prove that for any given

SLRU configuration, there always exists an I-PLRU configuration under which the asymptotic

miss probability of each flow is the same as that under the SLRU configuration, and vice

versa. Furthermore, we prove that the equivalence mapping is one-to-one.

(3) We study a class of performance optimization problems for I-PLRU caching based on miss

probabilities. Such problems turn out to be non-convex. Though solving a general non-

convex optimization problem is difficult, this class has a special structure to exploit. By using

the equivalence mapping, we prove that the non-convex problem has only one stationary

point, which is the global optimum. Interestingly, this equivalence mapping transfers the

non-convex problem under I-PLRU to a convex problem under SLRU, which is analytically

tractable. In a reverse direction, the optimal SLRU configuration can be mapped back to the

optimal I-PLRU configuration.

The rest of the paper is organized as follows. In Section 2, we introduce notations and formulate

the miss probability minimization (MPM) problem. In Section 3, we present the limitations of PLRU

and SLRU. In Section 4, we propose the new caching paradigm I-PLRU and rigorously characterize

its asymptotic performance. We also solve the MPM problem for I-PLRU in this section. In Section 5,

we discuss the engineering issues including general or unknown popularity distributions. The

theoretical results are validated by simulations in Section 6. In Section 7, we conclude our work.

The proofs of main theorems are provided in Section 8.

2 PROBLEM FORMULATION
The broad objective of this paper is to systematically develop an easy-to-implement and provably

efficient LRU-based cache management mechanism that allows multiple flows to flexibly share

a total memory space. To that end, in this section, we introduce the basic setting and the miss

probability minimization (MPM) problem that we will tackle in the subsequent sections.

ConsiderM data flows, where a data flow is a sequence of data requests from a data domain or

an application. Let Dm = {d
(m)
i , i ≥ 1} denote the set of data items that are requested by flowm,

1 ≤ m ≤ M . Assume thatDm ’s are disjoint sets and the data items have unit sizes. Note that ifDm ’s

are overlapped, we can always separate the flows into multiple subflows such that the subflows

have no overlap, and the results of this paper will hold for the subflows. A similar trick can be

found in [9, 28]. The requests of flowm arrive according to a Poisson process with an arrival rate

λm , 1 ≤ m ≤ M . Let {τn ,−∞ < n < ∞} denote the sequence of epochs when the requests arrive.

Let In and Rn denote the flow index and the requested data that arrive at τn , respectively. Note that
In ∈ {1, 2, · · · ,M } and Rn ∈ DIn . After the system reaches its stationarity, it suffices to analyze the

system at a given epoch, say τ0. We assume an independent reference model (IRM) [29], i.e., for

1 ≤ m ≤ M ,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:4 G. Quan, et al.

1) the requests of different flows arrive independently with

νm ≜ P[I0 =m] = λm

/ M∑
k=1

λk ;

2) the requests within each flow are independent and follow the popularity distribution

p (m)
i ≜ P

[
R0 = d

(m)
i

���I0 =m
]
, i ≥ 1.

As reported by analysis on real data traces [31], the requests typically follow a Zipf’s distribution.

Thus, we assume, for i ≥ 1, 1 ≤ m ≤ M

p (m)
i ∼ cm/i

αm , αm > 1, (1)

where f (x) ∼ д(x) means limx→∞ f (x)/д(x) = 1.

Let π be the cache management paradigm (e.g., PLRU, SLRU) that organizes the cache space to

serve multiple flows. We use Qπ
m to denote the miss probability of flowm under the paradigm π ,

i.e.,

Qπ
m ≜ P [R0 is a miss|I0 =m;π] .

Miss probability minimization:
Miss probability minimization (MPM) is a fundamental problem for caching systems that support

data-intensive applications. For a given cache space of total size C , the objective is to minimize the

miss probability. The problem is formulated as follows

min

π

M∑
m=1

wm ·Q
π
m (2)

subject to The total cache size is C,

wherewm ’s are arbitrary positive weights. The analysis in this paper for Problem (2) can be easily

extended to general objective functions

∑M
m=1 um (Qπ

m) where um (·)’s are convex functions. More

comments on the extension is provided in Section 4.3.

3 EXISTING APPROACHES
In this section, we summarize two commonly used design strategies, SLRU and PLRU, that are used

to organize LRU caching for multiple data flows. We discuss their limitations, which motivate a

new flexible cache management paradigm, i.e., I-PLRU.

3.1 Separated LRU (SLRU) Caching
Separated LRU (SLRU) caching is one of the most commonly used methods to organize cache space

for multiple data flows [1, 2]. Under the SLRU paradigm, the total cache space is separated into

multiple LRU caches and each flow is served by a dedicated partition as shown in Fig. 1. In general,

consider M data flows served by SLRU with the total cache size C . Assume data flowm is only

served by themth
LRU cache, 1 ≤ m ≤ M . Let θmC denote the size of the cache space allocated to

themth
LRU cache with

∑M
m=1 θm = 1, 0 ≤ θm ≤ 1, 1 ≤ m ≤ M . Although each cache can only store

an integer number of data items, we assume that the cache size can take continuous real values

for analytical convenience, because the discrete constraints will have a vanishing impact on the

asymptotic results as C → ∞. Note that the SLRU caching can be characterized by the allocation

configuration θ and the total cache size C . Therefore, we introduce the following definition.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:5

Fig. 1. Three data flows organized by SLRU caching.

Definition 3.1 (SLRU). Set θ = (θ1,θ2, · · · ,θM), θm > 0, 1 ≤ m ≤ M ,

∑M
m=1 θm = 1. DefineS (θ ;C)

as the SLRU paradigm where the total cache size is C and the size of the cache space allocated to

flowm is θmC .

Notably, under the SLRU paradigm, the flows are served independently by the corresponding

LRU caches. The miss probability of each flow can be obtained using the analytical tool for standard

LRU caching. Applying existing results in [16], the asymptotic miss probabilities under SLRU are

provided in the following lemma.

Lemma 3.2 ([16]). ConsiderM data flows organized by the SLRU paradigm S (θ ;C). LetQSLRU
m (θ ;C)

denote the miss probability of flowm, 1 ≤ m ≤ M . We have, as C → ∞

QSLRU
m (θ ;C) ∼

Γ(1 − 1/αm)αm

αm

cm
(θmC)αm−1

,

where Γ(x) =
∫ ∞
t=0 t

x−1e−tdt is the gamma function.

Recall that f (x) ∼ д(x) indicates limx→∞ f (x)/д(x) = 1. The miss probability can be minimized

by optimizing the cache space allocated to each flow. We formulate the MPM problem under SLRU

as

min

θ

M∑
m=1

wm ·Q
SLRU

m (θ ;C)

subject to θm ≥ 0, 1 ≤ m ≤ M, (3)

M∑
m=1

θm = 1,

wherewm ’s are positive weights. Lemma 3.2 shows that the asymptotic miss probability of SLRU is

a convex function with respect to θ . As a result, the MPM problem under SLRU is asymptotically a

convex problem. Let θ ∗ (C) denote the optimal solution given the total cache size C . According to
the KKT conditions [7], we have as C → ∞, for any 1 ≤ i, j ≤ M

θ ∗i (C)

θ ∗j (C)
∼

Γ(1 − 1/αi)
αi (1 − 1/αi)ciwi

Γ(1 − 1/α j)α j (1 − 1/α j)c jw j
·C−αi+α j . (4)

Combining (4) and the fact that

∑M
i=1 θ

∗
i (C), we can solve θ ∗ (C) explicitly. Moreover, even for

general objectives

∑M
m=1 um (QSLRU

m (θ ;C)), the problem remains convex as long asum (·)’s are convex
functions. More details of the MPM problem under SLRU are discussed in [9, 28].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:6 G. Quan, et al.

3.2 Pooled LRU (PLRU) Caching
Instead of separating the cache space into multiple LRU cache partitions that serve data flows

dedicatedly, PLRU caching organizes the total cache space as a single LRU list as shown in Fig. 2.

Once a request arrives, the requested data will be placed to the head of the list, no matter which

flow it belongs to. In order to make room for newly requested data, the least recently used data

item (i.e., the data stored at the rear) will be evicted if necessary. As we can see in Fig 2, the entire

cache is shared by all data flows under LRU. Consequently, the cache space occupied by each flow

is not fixed.

Fig. 2. Three data flows organized by PLRU caching.

The PLRU paradigm has the advantage of simplicity and resource pooling nature whereby

the cache space can be used more adaptively by all flows, when data statistics (e.g., popularities,

request rates) are time-varying. The asymptotic miss probability of PLRU is characterized in [9, 28].

Different from SLRU, PLRU does not support flexible configurations and consequently does not

generally achieve the minimum miss probability of SLRU. However, it is proven in [28] that PLRU

automatically optimizes the MPM problem with a specific objective function

∑M
m=1 νm Qπ

m for any

Zipf’s popularity distributions, where νm = P[I0 =m].

3.3 Limitations of SLRU & PLRU
Despite their appealing characteristics outlined above and successful applications, both SLRU and

PLRU have limitations. In this section, we illustrate their limitations by simulation examples.

1. Limitations of SLRU:
Deteriorating performance in a dynamically changing environment: When the statistics of the

workload change over time, a static cache space allocation cannot always achieve the optimal

performance. On the other hand, if dynamically resizing the cache partitions reallocated among

flows, a so-called cold-start problem will deteriorate the system performance [10]. When a portion

of cache space is reallocated, the data stored in this portion will be invalidated, which incurs high

miss probabilities before the cache becomes full again. This phenomenon is called the cold-start

problem. SLRU will suffer from the cold-start problem when changing the configuration. Consider

an SLRU system serving two flows with the objective to minimize the overall miss probability

ν1Q
SLRU

1
+ ν2Q

SLRU

2
. Let α1 = α2 = 1.2 and C = 4000. Assume that the data set for each flow has 10

6

data items. We have c1 = c2 = 1/
∑

10
6

i=1 i
−1.2 = 0.1895. Assume that the workload has two stages.

In Stage 1, the system only serves flow 1, i.e., ν1 = 1,ν2 = 0. To minimize the miss probability, all

cache space is allocated to flow 1. After serving 10
5
requests from flow 1, the system enters Stage 2

and starts to serve two flows with ν1 = ν2 = 0.5. The optimal cache space allocation in Stage 2 is

θ1 = θ2 = 0.5 due to the symmetric setting. At the beginning of Stage 2, no valid data is stored in

the cache space allocated to flow 2, and the system suffers from the cold-start problem. We define

the transient period as the time period when the cache of flow 2 is not full. After that, the system is

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:7

0 10 20 30 40 50

Number of requests (×500)

0.15

0.2

0.25

0.3

0.35

O
ve
ra
ll
m
is
s
p
ro
b
ab

il
it
y Stationary periodTransient

 period

(a) Transient period of cold-start.

0.17

0.18

0.19

0.2

0.21

0.22

0.23

O
v
er
a
ll
m
is
s
p
ro
b
a
b
il
it
y

SLRU

(stationary)

SLRU

(transient)

+10.28%

+16.50%

I-PLRU

(transient)

I-PLRU

(stationary)

(b) Increased miss probability during transient period.

Fig. 3. Deteriorating performance of SLRU. The figures show that the cold-start increases the miss probability,
but I-PLRU is less impacted than SLRU.

in the stationary period. In Fig. 3a, we illustrate how the overall miss probability changes over time

in Stage 2 under the SLRU paradigm. The miss probability is approximated by the miss frequency

of every 500 requests. It can be observed that the overall miss probability during the transient

period is much higher than that during the stationary period. In Fig. 3b, we plot the average miss

probability of the transient period and the stationary period for both SLRU and I-PLRU. It can be

observed that the miss probability of I-PLRU only increases by 10.28% during the transient period,

compared with a 16.50% increment of SLRU. Therefore, the new I-PLRU paradigm is less impacted

by the cold-start problem. Moreover, I-PLRU achieves the same stationary miss probability with

the optimal SLRU.

2. Limitations of PLRU:
Lack of refined control for individual flows: Once the total cache space is given, the PLRU paradigm is

fixed. It does not support flexible configurations for individual flows to optimize general performance

objectives.We overcome this limitation by proposing I-PLRU paradigm,which assigns individualized

insertion positions for different flows.

Consider 2 data flows with ν1 = ν2 = 0.5,α1 = α2 = 2. Assume that the data set for each flow

has 10
6
data items with c1 = c2 = 1/

∑
10

6

i=1 i
−2 = 0.6079. The performance objective is to minimize

the overall miss probabilities w1Q
π
1
+ w2Q

π
2
. Let w1 = 0.1,w2 = 0.9. We plot the overall miss

probabilities achieved by PLRU and the optimal I-PLRU in Fig. 4. We observe that the new I-PLRU

paradigm achieves better performance than PLRU.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:8 G. Quan, et al.

100 200 300 400 500

Total cache size: C

0

0.005

0.01

0.015

0.02

O
v
er
a
ll
m
is
s
p
ro
b
a
b
il
it
y PLRU

I-PLRU

Fig. 4. Suboptimal performance of PLRU. The figure shows that I-PLRU can achieve better miss probabilities
than PLRU.

4 A NEW FLEXIBLE CACHE MANAGEMENT PARADIGM
In this section, we propose an insertion based pooled LRU caching design, termed I-PLRU. It

achieves the high efficiency of SLRU and retains the adaptability of PLRU at the same time. In

Section 4.1, we introduce the definition of I-PLRU. In Section 4.2, we rigorously characterize the

asymptotic miss probability achieved by I-PLRU, and establish an equivalence mapping between

I-PLRU and SLRU. In Section 4.3, we formulate the MPM problem for I-PLRU and find the optimal

I-PLRU configuration based on the equivalence mapping.

4.1 Definition of I-PLRU
Under the I-PLRU paradigm, the memory space is organized as a single list and serves multiple

flows in a common shared cache as in the PLRU mechanism. However, different from the PLRU

paradigm, data flows can be inserted at different positions rather than merely at the head of the

list. Specifically, each data flow is assigned with an insertion position. Once a request arrives, the

requested data will be inserted at the corresponding position in an LRU fashion. Note that PLRU is

a special case of I-PLRU where the insertion positions of all flows are the head of the list. If a miss

occurs and the cache is full, the data stored at the rear of the list will be moved out of the cache to

make room for the newly requested one. Remarkably, under I-PLRU, data items are not fully sorted

as in the PLRU mechanism, because the data flows can be inserted at different positions.

Fig. 5. Three data flows organized by I-PLRU caching.

Without loss of generality, assume the flows are sorted according to their insertion positions,

such that flow 1 is inserted at the head of the list. We illustrate an I-PLRU paradigm serving 3 flows

in Fig. 5. The cache can be labeled asM consecutive blocks (say Bm , 1 ≤ m ≤ M) such that flowm

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:9

is inserted at the first position of Bm . According to the insertion and eviction policy, the memory

block Bm is shared by flows 1, · · · ,m, but not flowsm + 1, · · · ,M . Notably, an I-PLRU paradigm

can be characterized by the total cache size C and the insertion positions (or equivalently, the size

of Bm ’s).

Definition 4.1 (I-PLRU). Set η = (η1,η2, · · · ,ηM), ηm ≥ 0, 1 ≤ m ≤ M ,

∑M
m=1 ηm = 1. Define

I (η;C) as an I-PLRU paradigm where the total cache size is C and the cache size of Bm is ηmC .

We list the key advantages of I-PLRU over PLRU and SLRU as follows.

(1) High Efficiency: I-PLRU supports flexible configurations to optimize system performance. As

one of the main results of this paper, we will show (in Theorem 4.9) that I-PLRU can achieve

the same miss probabilities as the optimal SLRU paradigm, and significantly improves the

performance of conventional PLRU.

(2) High Adaptability: When configurations require adaptive updates in dynamically changing

environments, I-PLRU is less impacted by the cold-start problem compared to SLRU. By

changing insertion positions rather than cache partitions, the memory space under I-PLRU is

not pre-allocated to a flow until sufficient requests arrive. Consequently, the cache is never

empty even when configurations are dynamically adapted. We show the benefits of I-PLRU

under the cold-start through simulation results (in Experiment 3).

Despite all these advantages, the theoretical analysis for I-PLRU is far more challenging than

that for PLRU and SLRU. We will show (in Section 4.3) that the MPM problem under I-PLRU is

non-convex. To illustrate the difficulties, consider three flows served by PLRU and I-PLRU shown

in Fig. 2 and Fig. 5, respectively. Under the PLRU paradigm, data items of the three flows are evenly

distributed in the cache if popularity distributions are similar. Under the I-PLRU paradigm, however,

data items of each flow are more concentrated around its insertion position. As a result, the flows

are coupled together in a complicated way.

4.2 Equivalence Mapping Between I-PLRU and SLRU Paradigms
In this section, as the total cache size C → ∞, we characterize the asymptotic behavior of the

proposed I-PLRU paradigm by establishing an equivalence mapping between I-PLRU and SLRU.

Let the random variableXm (η;C) denote the number of data items of flowm stored in the I-PLRU

I (η;C). Let Q I-PLRU

m (η;C) denote the miss probability of flowm under I (η;C). In this section, we

rigorously characterize the asymptotic behavior of Xm (η;C) and Q I-PLRU

m (η;C) as the total cache
size C → ∞.

Definition 4.2 (Equivalence). ConsiderM data flows and the cache space of size C . We say that

the I-PLRU paradigm I (η;C) and the SLRU paradigm S (θ ;C) are equivalent, denoted by

I (η;C) ≡ S (θ ;C),

if, for any 1 ≤ m ≤ M , as the total cache size C → ∞

Xm (η;C)

θmC

a .s .
−→ 1.

An I-PLRU configuration is equivalent to an SLRU configuration, if for each flow, the number of

items stored in the I-PLRU paradigm is almost surely concentrated around the cache space allocated

to that flow in the SLRU paradigm, when the total cache space is sufficiently large. Note that η and

θ in Definition 4.2 can be functions of the total cache sizeC . Based on this definition, we show that

equivalent SLRU and I-PLRU configurations achieve the same asymptotic miss probabilities in the

following theorem.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:10 G. Quan, et al.

Theorem 4.3. Consider the I-PLRU configuration I (η;C) and the SLRU configuration S (θ ;C). If

I (η;C) ≡ S (θ ;C),

then for 1 ≤ m ≤ M , we have, as the total cache size C → ∞

Q I-PLRU
m (η;C) ∼ QSLRU

m (θ ;C)

∼
Γ(1 − 1/αm)αm

αm

cm
(θmC)αm−1

.

The proof is presented in Section 8.1. If an I-PLRU configuration and an SLRU configuration

are equivalent, then each flow will achieve the same asymptotic miss probability under these two

paradigms. Therefore, we can characterize the miss probability for I-PLRU by first identifying its

equivalent SLRU configuration and then applying Theorem 4.3. Next, we will show how to find the

equivalent SLRU configuration S (θ ;C) for a given I-PLRU configuration I (η;C), and vice versa.

Theorem 4.4. ConsiderM data flows served by an I-PLRU paradigm I (η;C). Assume that there
exists β ∈ (−1, 0] such that ηM ≳ Cβ asC → ∞. Let F1 (η;C) denote the output of Algorithm 1 with η
and C as its input. We have

I (η;C) ≡ S (F1 (η;C);C).

Algorithm 1: Finding the equivalent SLRU for I-PLRU

Output: θm , 1 ≤ m ≤ M
Input: ηm , 1 ≤ m ≤ M , C
Initialization: set θm = 0, tm = 0, 1 ≤ m ≤ M ;

θ1 ← η1;

form ← 2 toM do
for i ← 1 tom − 1 do

ti ←
(

θiC
Γ(1−1/αi)ci 1/αi

)αi
;

end
Solve z as the unique solution of

m∑
i=1

Γ (1 − 1/αi) ci
1/αi (ti + νiz)

1/αi =

m∑
i=1

ηiC;

for i ← 1 tom do
θi ← Γ (1 − 1/αi) ci

1/αi (ti + νiz)
1/αi /C;

end
end

Note that f (x) ≳ д(x) means limx→∞ f (x)/д(x) ≥ 1. The assumption in Theorem 4.4 requires

that ηM cannot be too small. For example, ηM can take any constant value in (0, 1]. In Algorithm 1,

we calculate θ recursively. Recall that the I-PLRU cache can be labeled as M blocks (i.e., Bm ,
1 ≤ m ≤ M) by the insertion positions. In Algorithm 1, we start from the first two blocks B1 and

B2. We calculate the equivalent SLRU configuration for the subsystem that consists of B1 and B2,

based on which, the equivalent SLRU configurations for the subsystems that consist of 3, · · · ,M − 1
blocks are calculated recursively. And finally we derive the equivalent SLRU configuration for the

system that consists of all M blocks, i.e., our original I-PLRU system. Detailed explanations and

proofs of Theorem 4.4 are presented in Section 8.2. Next, we consider the inverse mapping that

finds the equivalent I-PLRU configuration I (η;C) for a given SLRU configuration S (θ ;C).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:11

Theorem 4.5. Consider M flows served by an SLRU paradigm S (θ ;C). Assume that for 1 ≤
m ≤ M , there exists βm ∈ (−1, 0] such that θm ≳ Cβm as C → ∞, and the flows are sorted such
that (θmC)αm/(Γ(1 − 1/αm)αmcmνm) is decreasing with respect tom. Let F2 (θ ;C) be the output of
Algorithm 2 with θ and C as its input. We have

S (θ ;C) ≡ I (F2 (θ ;C);C).

Algorithm 2: Finding the equivalent I-PLRU for SLRU

Output: ηm , 1 ≤ m ≤ M
Input: θm , 1 ≤ m ≤ M , C
Initialization: set ηm = 1, 1 ≤ m ≤ M ;

form ← M to 2 do

z ←
(

θmC
Γ(1−1/αm) (cmνm)1/αm

)αm
;

for i ← 1 tom − 1 do

ti ←
(

θiC
Γ(1−1/αi)ci 1/αi

)αi
− νiz;

θi ← Γ (1 − 1/αi) (citi)
1/αi /C;

end
ηm−1 ←

∑m−1
i=1 θi ;

ηm ← ηm −
∑m−1

i=1 θi ;

end

The assumption ofTheorem 4.5 guarantees that the flow with a smaller index should be inserted

in front of the flow with a larger index under the equivalent I-PLRU paradigm. In Algorithm 2,

the equivalent I-PLRU configuration is calculated recursively. We first decide the last insertion

position, i.e., the size of BM . Then, the problem is reformulated as finding the equivalent I-PLRU

configuration for an SLRU paradigm servingM − 1 data flows. Repeating the same process, we can

find the insertion positions for flowsM − 1, · · · , 2, respectively. The insertion position for flow 1 is

just the head of the cache. Detailed explanations and proofs are presented in Section 8.3.

Notably, Algorithm 2 can be simplified if θm ’s are constants and the decay rates of the Zipf’s

popularity distributions, i.e., α1,α2, · · · ,αM , are all different.

Corollary 4.6. Consider M flows served by an SLRU paradigm S (θ ;C). Assume that θm ’s are
constants and the flows are sorted such that αi > α j , for any 1 ≤ i < j ≤ M . We have

S (θ ;C) ≡ I (η;C),

where ηm = θm , 1 ≤ m ≤ M .

The proof is presented in Section 8.4. Corollary 4.6 indicates that for M flows with α1 > α2 >
· · · > αM , the I-PLRU paradigm behaves as if the memory block Bm , 1 ≤ m ≤ M , only serves

flowm, as the total cache size goes to infinity. Note that the equivalent I-PLRU configuration found

by Algorithm 2 is more accurate than Corollary 4.6 when the total cache size is relatively small.

In Theorems 4.4 and 4.5, we introduce the methods to find the equivalent SLRU configuration for

a given I-PLRU, and vice versa. A remaining question is whether the mapping between equivalent

I-PLRU and SLRU configurations is one-to-one or not. In the next theorem, we show that for any

I-PLRU configuration I (η;C), the configuration S (θ ;C) of its equivalent SLRU paradigm is unique,

and vice versa.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:12 G. Quan, et al.

Theorem 4.7. Consider the I-PLRU paradigm I (η;C) and the SLRU paradigm S (θ ;C) that are
equivalent (i.e., I (η;C) ≡ S (θ ;C)). Assume that for 1 ≤ m ≤ M , there exists βm ∈ (−1, 0] such that
θm ≳ Cβm . We have, for any θ̃ and η̃, as C → ∞
1) if I (η;C) ≡ S (θ̃ ;C), then θ̃m ∼ θm , 1 ≤ m ≤ M ;
2) if S (θ ;C) ≡ I (η̃;C), then either η̃m ∼ ηm , or limC→∞ η̃m/θm = limC→∞ ηm/θm = 0, 1 ≤ m ≤ M .

We give an example to help the understanding of case 2) of Theorem 4.7. Consider two flows

with the same popularity distributions and request rates, and an SLRU paradigm with θ1 = θ2 = 0.5.
Any I-PLRU paradigms with η1 = o(C) are equivalent to the SLRU paradigm, because Xm (η;C),
1 ≤ m ≤ 2 is almost surely dominated by the number of items of flow m in B2 as C → ∞. To
guarantee the uniqueness, we can simply let ηm = 0 if any ηm with limC→∞ ηm/θm = 0 is a solution

for the equivalent I-PLRU. Combining Theorems 4.4, 4.5 and 4.7, we know that F1 (·) and F2 (·)
define a one-to-one mapping between the equivalent I-PLRU and SLRU configurations in the

asymptotic regime. By leveraging this mapping, we find the I-PLRU configuration that optimizes

system performance in the following section.

4.3 Optimal I-PLRU Configuration
In this section, we consider the MPM problem under I-PLRU. Our objective is to find the insertion

positions that achieve the smallest asymptotic miss probability. The problem is formulated as

follows:

min

η

M∑
m=1

wm Q I-PLRU

m (η;C)

subject to ηm ≥ 0, 1 ≤ m ≤ M, (5)

M∑
m=1

ηm = 1.

Letη∗ (C) denote the optimal solution of Problem (5). We aim to characterize its asymptotic behavior,

i.e., limC→∞ η∗ (C). Before solving the problem, we first show that the problem is non-convex.

Lemma 4.8. The miss probabilityQ I-PLRU
m (η;C) is a non-convex function with respect to η. Moreover,

as C → ∞, we have

Q I-PLRU
m (η;C) ∼ QSLRU

m (F1 (η;C);C),

where QSLRU
m (θ ;C) is asymptotically a convex function with respect to θ and F1 (·) is the one-to-one

mapping defined by Algorithm 1.

The non-convexity can be easily verified by considering the case with M = 2. Remarkably,

although the MPM problem for I-PLRU is non-convex, it has a special structure, i.e., each term in its

objective function is asymptotically a convex functionQSLRU

m (·,C) in conjunction with a one-to-one

mapping function F1 (·). Thus, η∗ (C) should be the same as the solution of the following problem

in the asymptotic regime.

min

η

M∑
m=1

wm QSLRU

m (F1 (η;C);C)

subject to ηm ≥ 0, 1 ≤ m ≤ M, (6)

M∑
m=1

ηm = 1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:13

Furthermore, let θ = F1 (η;C). We have η = F2 (θ ;C) by Theorem 4.7. Let θ ∗ (C) denote the solution
of the following problem,

min

θ

M∑
m=1

wm QSLRU

m (θ ;C)

subject to θm ≥ 0, 1 ≤ m ≤ M, (7)

M∑
m=1

θm = 1.

Since F1 (·), F2 (·) are one-to-one mappings, we have η∗ (C) ∼ F2 (θ
∗ (C);C) as C → ∞. Note that

Problem (7) is actually the MPM problem under SLRU and is strictly convex (see Section 3.1).

Therefore, the asymptotic optimal solution limC→∞ θ
∗ (C) is unique. Since F2 (·) is a one-to-one

mapping, the asymptotic optimal solution limC→∞ η∗ (C) of the non-convex problem (5) is also

unique. We formally state the relationship between θ ∗ (C) and η∗ (C) in the following theorem.

Theorem 4.9. Recall that η∗ (C) is the optimal I-PLRU configuration of Problem (5). We have, as
the total cache size C → ∞

η∗ (C) ∼ F2 (θ
∗ (C);C)

and for 1 ≤ m ≤ M

Q I−PLRU
m (η∗ (C),C) ∼ QSLRU

m (θ ∗ (C),C),

where θ ∗ (C) is the optimal SLRU configuration of Problem (7) and F2 (·) is the one-to-one mapping
defined by Algorithm 2.

The poof is a direct application of Theorems 4.3, 4.5 and 4.7. By leveraging the special structure of

Q I-PLRU

m (η;C) characterized in Lemma 4.8, we transfer the non-convex problem to a convex problem,

and are able to find the optimal I-PLRU configuration based on Equation (4) and Algorithm 2.

Notably, although the result is only rigorous in the asymptotic regime, it is still very accurate when

the total cache size C is small as shown by Experiment 2 in Section 6. In addition, Theorem 4.9 can

be easily extended to general objective functions

∑M
m=1 um (Qπ

m) where um (·)’s are convex, because
the MPM problem under SLRU (i.e., Problem (7)) retains the convexity for such objective functions.

5 DISCUSSIONS ON ENGINEERING ISSUES
Based on our theoretical analysis, in this section, we present heuristic algorithms that build over

our analytical investigations to deal with general and unknown popularity distributions in real

applications.

5.1 General popularity distributions and non-identical data sizes
Our investigations have focused on the case of the commonly used Zipf’s distribution for the

popularity profile. However, in general the popularities may not follow a Zipf’s distribution. In this

section, we address the question of whether we can still identify an I-PLRU configuration that is

equivalent to a given SLRU configuration, and vice versa. In particular, by leveraging the character-

istic time approximation [12, 14], we propose Algorithms 3, 4 that generalize Algorithms 1, 2 for

popularity distributions beyond Zipf’s. Let p (m)
i , s (m)

i denote the popularity and the size of data

item d (m)
i , respectively, i ≥ 1, 1 ≤ m ≤ M .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:14 G. Quan, et al.

Conjecture 5.1. ConsiderM data flows served by an I-PLRU paradigm I (η;C). Let F3 (η;C) denote
the output of Algorithm 3 with η and C as its input. We have

I (η;C) ≡ S (F3 (η;C);C).

Algorithm 3: Finding the equivalent SLRU for I-PLRU

Output: θm , 1 ≤ m ≤ M
Input: ηm , 1 ≤ m ≤ M , C
Initialization: set θm = 0, tm = 0, 1 ≤ m ≤ M ;

θ1 ← η1;

form ← 2 toM do
for i ← 1 tom − 1 do

Solve ti as the unique solution of∑
j≥1

s (i)j
(
1 − exp

(
−q (i)j ti

))
= θiC;

end
Solve z as the unique solution of

m∑
i=1

∑
j≥1

s (i)j
(
1 − exp

(
−q (i)j (ti + νiz)

))
=

m∑
i=1

ηiC;

for i ← 1 tom do
θi ←

∑
j≥1 s

(i)
j

(
1 − exp

(
−q (i)j (ti + νiz)

))
/C;

end
end

Conjecture 5.2. Consider M flows served by an SLRU paradigm S (θ ;C). Assume without loss
of generality that the flows are sorted such that tm is decreasing with respect tom, where tm is the
unique solution of ∑

i≥1

s (m)
i

(
1 − exp

(
−p (m)

i νmtm
))
= θmC .

Let F4 (θ ;C) be the output of Algorithm 4 with θ and C as its input. We have

S (θ ;C) ≡ I (F4 (θ ;C);C).

Similar to the procedures in Algorithms 1 and 2, we use recursive arguments to find the equivalent

SLRU and I-PLRU configurations in Algorithms 3 and 4, respectively. However, the parameters

tm and tm + νmz, 1 ≤ m ≤ M in Algorithms 3 and 4 are computed using the characteristic time

approximation [12, 14] without rigorous accuracy guarantees for general distributions. We validate

the accuracy of Algorithms 3 and 4 using real-world traces in Experiment 4. It is observed that the

generalized algorithms are not only accurate for popularity distributions beyond Zipf’s, but also

robust to time correlations among the requests. Note that when the popularities satisfy the Zipf’s

assumption (i.e., Equation (1)) and the data sizes are 1, Algorithms 3, 4 degenerate to Algorithms 1, 2,

respectively.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:15

Algorithm 4: Finding the equivalent I-PLRU for SLRU

Output: ηm , 1 ≤ m ≤ M
Input: θm , 1 ≤ m ≤ M , C
Initialization: set ηm = 1, 1 ≤ m ≤ M ;

form ← M to 2 do
Solve z as the unique solution of∑

j≥1

s (m)
j

(
1 − exp

(
−q (m)

j νmz
))
= θmC;

for i ← 1 tom − 1 do
Solve ti as the unique solution of∑

j≥1

s (i)j
(
1 − exp

(
−q (i)j ti

))
= θiC;

ti ← ti − νiz;

θi ←
∑

j≥1 s
(i)
j

(
1 − exp

(
−q (i)j ti

))
/C;

end
ηm−1 ←

∑m−1
i=1 θi ;

ηm ← ηm −
∑m−1

i=1 θi ;

end

5.2 Unknown popularity distributions
In our investigations so far, we have assumed that the popularity distributions of items are known,

while the popularities of individual content are unknown. Although this assumption is acceptable

in many scenarios, in other real-world applications the popularities of the data could be unknown

and time-varying. This motivates us in this section to address the question of how to efficiently

find the optimal insertion positions for I-PLRU under unknown popularities. To this end, we next

present zeroth and first order methods to incorporate learning of popularity distributions into our

design.

Zeroth-order method: A heuristic method is to update the insertion positions along the direction

that can potentially reduce the miss probability. Specifically, we can first randomly initialize the

insertion positions η (0)
, and evaluate the miss probability of each flow denoted byQ (0)

m , 1 ≤ m ≤ M .

Next, we randomly update the insertion positions as η (1) = η (0) + ∆η (0)
, and evaluate the miss

probabilities Q (1)
m , 1 ≤ m ≤ M achieved by the new insertion positions. Then, for t = 1, 2, 3, · · · , let

∆η (t) =
*.
,

w1

(
Q (t)
1
−Q (t−1)

1

)
∆η1

,
w2

(
Q (t)
2
−Q (t−1)

2

)
∆η2

, · · · ,
wM

(
Q (t)
M −Q

(t−1)
M

)
∆ηM

+/
-
,

and update

η (t+1) = η (t) − γ ·
∆η (t)

| |∆η (t) | |
,

where γ is the step size andQ (t)
m is the miss probability of flowm achieved by the insertion positions

η (t)
. Note that updating η (t)

along the opposite direction of ∆η (t)
can potentially decrease the

overall miss probability and get closer to the optimum. In [9], a similar approach is applied to find

the optimal SLRU configurations for unknown popularities.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:16 G. Quan, et al.

First-order method: Assume that the popularities follow Zipf’s distributions with the same decay

rate, i.e., p (m)
i ∼ cm/i

α
, α > 1, i ≥ 1, 1 ≤ m ≤ M , and the parameters cm , α are unknown. We

are able to estimate the gradient of the objective function and then apply the gradient descent

algorithm to find the optimum. Define the gradient for MPM problems under I-PLRU as

∇I = *
,

M∑
m=1

wm
∂Q I-PLRU

m

∂η1
,

M∑
m=1

wm
∂Q I-PLRU

m

∂η2
, · · · ,

M∑
m=1

wm
∂Q I-PLRU

m

∂ηM
+
-
.

For t = 0, 1, 2, · · · , and the initial insertion position η (0)
, we can update the insertion position as

η (t+1) = η (t) − γ ·
∇I

���η=η (t)

���
���∇I

���η=η (t)
���
���
, (8)

where γ is the step size. The remaining problem is how to estimate the direction of the gradient.

Define the gradient for MPM problems under SLRU

∇S = *
,
w1

∂QSLRU

1

∂θ1
,w2

∂QSLRU

2

∂θ2
, · · · ,wM

∂QSLRU

M

∂θM
+
-
,

and

JS =



∂θ1
∂η1

∂θ1
∂η2

. . . ∂θ1
∂ηM

∂θ2
∂η1

∂θ2
∂η2

. . . ∂θ2
∂ηM

...
...

. . .
...

∂θM
∂η1

∂θM
∂η2

. . . ∂θM
∂ηM



.

The gradient for MPM problems under I-PLRU can be expressed as∇I = ∇S JS , if the SLRU paradigm

and the I-PLRU paradigm are equivalent. Moreover, recalling Definition 4.2 and Theorem 4.3, we

have

θm ≈ Xm (η;C)/C, for 1 ≤ m ≤ M ,

∇S ≈ −(α − 1) · *
,

w1Q
I-PLRU

1

θ1
,
w2Q

I-PLRU

2

θ2
, · · · ,

wMQ
I-PLRU

M

θM
+
-
.

The direction of ∇S can be approximated by estimating Q I-PLRU

m (i.e., the miss ratio of flowm), and

Xm (η;C) (i.e., the cache space occupied by flow m), 1 ≤ m ≤ M , even when the parameters α ,
cm ’s are unknown. In addition, the matrix JS can be also approximated using such information.

Combining the estimation of ∇S and JS , we can approximate the direction of ∇I and adaptively

update the insertion position for I-PLRU based on (8).

6 EXPERIMENTS
In this section, we conduct four experiments to validate our results as well as to test various

metrics-of-interest under our proposed I-PLRU framework.

Experiment 1. In this experiment, we validate the mapping from I-PLRU to the equivalent SLRU

by simulating 4 flows served by both paradigms. Let (α1,α2,α3,α4) = (1.8, 1.8, 2.0, 2.2). Assume that

the data set of each flow has 10
6
distinct data items. We have cm = 1/

∑
10

6

i=1 i
−αm

. Let (ν1,ν2,ν3,ν4) =
(0.1, 0.3, 0.2,0.4). Set the configuration η of the I-PLRU paradigm as (η1,η2,η3,η4) = (0.2, 0.3, 0.2,
0.3). Then, we apply Algorithm 1 to calculate the equivalent SLRU configuration θ . We simulate the

I-PLRU paradigm and the equivalent SLRU paradigm. The empirical miss probabilities under these

two paradigms are plotted in Fig. 6a. It can be observed that the I-PLRU achieves the same miss

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:17

200 300 400 500 600 700 800

Total cache size: C

0

0.01

0.02

0.03

0.04

0.05

M
is
s
p
ro
b
a
b
il
it
y

flow 1, theoretical

flow 2, theoretical

flow 3, theoretical

flow 4, theoretical

flow 1, I-PLRU

flow 2, I-PLRU

flow 3, I-PLRU

flow 4, I-PLRU

flow 1, SLRU

flow 2, SLRU

flow 3, SLRU

flow 4, SLRU

(a) Miss probability of I-PLRU.

200 300 400 500 600 700 800

Total cache size: C

0.8

0.9

1

1.1

1.2

X

1
(η
;C

)/
(θ

1
C
)

(b) Cache space occupied by flow 1.

Fig. 6. Four flows served by I-PLRU. It is observed in (a) that equivalent I-PLRU and SLRU paradigms achieve
the same miss probability. Moreover, the theoretical result is accurate even when the cache size is relatively
small. It is observed in (b) that the ratio of the cache space occupied by flow 1 under I-PLRU to the one under
SLRU is more and more concentrated around 1 when the total cache size becomes larger.

probability as its equivalent SLRU, which validates the accuracy of Algorithm 1 even for relatively

small cache space (e.g., C = 200). We also plot the miss probability calculated by Theorem 4.3. The

theoretical results match well with the empirical ones. In addition, we sample X1 (η;C) (i.e., the
number of items of flow 1 stored in the cache) for 500 times, and plot the quantiles of the samples in

Fig. 6b. The box represents the 25
th
and 75

th
percentiles. The whiskers extend to the most extreme

data points. The red line and the symbol “+” represent the median and the mean, respectively.

We can observe that X1 (η;C)/(θ1C) is more and more concentrated around 1 as C becomes larger,

which directly verifies the equivalence by Definition 4.2. Due to limited space, we omit the similar

results of other flows. Note that if we apply Algorithm 2 to compute the equivalent I-PLRU for the

SLRU paradigm presented in this experiment, the same result will be obtained, which validates the

inverse mapping.

Experiment 2. In this experiment, we optimize I-PLRU and SLRU configurations and compare

them with PLRU. Consider 3 data flows with (ν1,ν2,ν3) = (0.2, 0.3, 0.5), α1 = α2 = α3 = 2. Assume

that the data set of each flowhas 10
6
distinct data items.η∗ = (0.39, 0.37, 0.24),θ ∗ = (0.47, 0.34, 0.19).

Therefore, we have c1 = c2 = c3 = 1/
∑

10
6

i=1 i
−2 = 0.6079. Assume the system objective is to minimize

the overall miss probability

∑M
m=1wmQ

π
m with (w1,w2,w3) = (0.6, 0.3, 0.1). Applying Theorem 4.9,

we obtain the optimal I-PLRU and SLRU configurations. We compared the overall miss probability

achieved by the optimal I-PLRU, the optimal SLRU and PLRU in Fig. 7. It can be observed that by

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:18 G. Quan, et al.

optimizing the insertion positions, I-PLRU significantly improves the performance of conventional

PLRU, and achieves the same miss probabilities as the optimal SLRU. Moreover, all empirical results

match well with the theoretical ones obtained from Theorem 4.3 and Theorem 4.9.

100 150 200 250 300 350 400

Total cache size: C

0.005

0.01

0.015

0.02

0.025

0.03

0.035
O
v
er
a
ll
m
is
s
p
ro
b
a
b
il
it
y

PLRU, theoretical

optimal, theoretical

PLRU, empirical

SLRU, empirical

I-PLRU, empirical

Fig. 7. Optimal performance of I-PLRU. The figure shows that the optimal I-PLRU achieves much better miss
probabilities than PLRU.

Experiment 3. In this experiment, we compare I-PLRU and SLRU under the cold-start. Consider

two flows with α1 = α2 = 1.2. Assume that the data set for each flow has 10
6
data items. We

have c1 = c2 = 1/
∑

10
6

i=1 i
−1.2 = 0.1895. The system objective is to minimize the overall miss

probability ν1Q
SLRU

1
+ ν2Q

SLRU

2
. Assume the workload has two stages. In Stage 1, the system only

serves flow 1, i.e., ν1 = 1,ν2 = 0. To minimize the miss probability, the optimal configurations in

Stage 1 are θ ∗ = (1, 0) for SLRU and η∗ = (1, 0) for I-PLRU. Then, after serving 105 requests from
flow 1, the system enters Stage 2. Assume the arrival rates of two flows are equal in Stage 2, i.e.,

ν1 = ν2 = 0.5. To retain high efficiency in stationary periods, the configurations should be updated

as θ ∗ = (0.5, 0.5) and η∗ = (0, 1). In Fig. 8, we plot the average overall miss probabilities for both

2000 2200 2400 2600 2800 3000

Total cache size: C

0.23

0.24

0.25

0.26

0.27

0.28

O
v
er
a
ll
m
is
s
p
ro
b
a
b
il
it
y SLRU

I-PLRU

Fig. 8. Comparison of SLRU and I-PLRU performance under cold-start. The figure reveals the robustness of
I-PLRU over SLRU.

paradigms during the transient period of SLRU (i.e., the time period when the cache space allocated

to flow 2 is not full). Compared with SLRU, I-PLRU achieves lower overall miss probabilities and

therefore alleviates the negative impact of the cold-start.

Experiment 4. In this experiment, we test the accuracy of the equivalence mapping under popu-

larity distributions obtained from real-world traces. The trace is collected on a content delivery

network and originally used for evaluation in [6]. We use a part of the trace that consists of 10
7

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:19

requests accessing 2265308 distinct data items. The data sizes are set to be 1. We randomly distribute

the data items into three flows with probabilities (0.2, 0.3, 0.5), and estimate the popularity of each

data item by its request frequency. Setting η = (0.1, 0.4, 0.5) for I-PLRU, we apply Algorithm 3

1 2 3 4 5 6 7 8

Total cache size: C
×10

4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
M
is
s
p
ro
b
a
b
il
it
y

flow 3, I-PLRU

flow 2, I-PLRU

flow 1, I-PLRU

flow 3, SLRU

flow 2, SLRU

flow 1, SLRU

Fig. 9. Equivalent I-PLRU and SLRU evaluated by real-world traces. The figure verifies that the equivalence
mapping defined by Algorithms 3 and 4 is accurate for real-world popularity distributions.

to compute the cache space allocation θ for the equivalent SLRU. We use the same trace to eval-

uate the miss probability of each flow under the equivalent I-PLRU and SLRU, respectively. The

results are plotted in Fig. 9. It can be observed that the miss probabilities achieved by the two

paradigms are almost the same, which verifies that the equivalent SLRU configuration calculated

by Algorithm 3 is accurate. The experiment can also validate Algorithm 4 since it is the inverse of

Algorithm 3. Notably, the data requests in the trace do not follow an exact Zipf’s distribution and

have correlations over time. The experiment indicates that the equivalence mapping defined by

Algorithms 3 and 4 is not only accurate under real-world popularity distributions but also robust

to time correlations.

7 CONCLUSION
In this paper, we proposed a new flexible multi-flow LRU cache management paradigm, termed

I-PLRU. Unlike, in the traditional SLRU paradigm, in I-PRLU, we do not separate the memory

space, thus alleviating the cold-start problem. Further, I-PLRU improves the conventional PLRU

by supporting dynamic and refined configurations for individual flows. We rigorously derived the

asymptotic miss probability of I-PLRU by establishing an equivalence mapping between I-PLRU

and SLRU. We formulated a class of miss probability minimization (MPM) problems for I-PLRU,

which turn out to be non-convex. Nonetheless, by leveraging the one-to-one equivalence mapping,

we were able to find the optimal I-PLRU configuration. We show that 1) for stationary workload,

I-PLRU outperforms PLRU and achieves the same miss probability as the optimal SLRU; 2) for

workload with dynamically changing data statistics (e.g., data popularities, request rates), I-PLRU

empirically achieves lower miss probabilities than the optimal SLRU by alleviating the cold-start

problem.

8 PROOFS
In this section, we provide detailed proofs for our main theorems.

Before investigating the proposed I-PLRU paradigm, we first introduce a two-level caching

paradigm shown in Fig. 10 to help the analysis. ConsiderM flows served by the two-level caching

paradigm. The total memory space is separated intoM cache partitions with the firstM−1 partitions
organized as the first level and theM th

partition organized as the second level. Once a request from

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:20 G. Quan, et al.

Fig. 10. A two-level caching paradigmM (ρ;C).

flowm arrives, the requested data will be inserted at the head of cachem, 1 ≤ m ≤ M . And if the

cache is full, according to the LRU algorithm, the data at the rear will be evicted. However, different

from the SLRU paradigm, the data items evicted from caches 1, · · · ,M − 1 will be inserted to the

head of cacheM immediately after the eviction. Notably, caches 1, 2, · · · ,M − 1 are LRU caches that

serve flows 1, 2, · · · ,M − 1 dedicatedly. And cacheM is shared by all data flows. Let C be the total

cache size and ρmC be the size of cachem, 0 < ρm < 1,

∑M
m=1 ρm = 1, 1 ≤ m ≤ M . LetM (ρ;C)

denote the caching paradigm shown in Fig. 10, and Ym (ρ;C) denote the cache space occupied

by flowm in the whole system. As the total cache size C → ∞, we characterize the asymptotic

behavior of Ym (ρ;C) in the following lemma.

Lemma 8.1. ConsiderM flows served by the caching paradigmM (ρ;C). Assume that there exists
β ∈ (−1, 0] such that ρM ≳ Cβ as C → ∞. We have

Ym (ρ;C)

ym

a .s .
−→ 1, as C → ∞, (9)

where

ym = Γ (1 − 1/αm) cm
1/αm (tm + νmz)

1/αm for 1 ≤ m ≤ M, (10)

tm =



(
ρmC

Γ(1−1/αm)cm 1/αm

)αm
for 1 ≤ m ≤ M − 1,

0 form = M,

and z is the unique solution of
M∑

m=1

Γ (1 − 1/αm) cm
1/αm (tm + νmz)

1/αm = C .

The proof is presented in Appendix A. Lemma 8.1 shows that, as the total cache size C goes to

infinity, Ym (ρ;C) will be concentrated around ym almost surely. We will apply Lemma 8.1 to prove

the main theorems.

8.1 Proof of Theorem 4.3
Proof. Consider a data flow organized by an LRU cache with a total cache size C . Assume all

data items (including the data items that are not stored in the cache) are maintained as a list and

sorted according to the last request time. The most recently requested data item is listed at the first

position. Note that only the first C data items are stored in the cache.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:21

Consider M data flows organized by the I-PLRU caches. We also maintain a list for each flow,

where the data items are sorted according to the last request time. Note that the order of the data

items in the list is only determined by the requests and independent with the cache size. A hit of

flowm occurs at time τ0 under the I-PLRU architecture I (η;C), if and only if the requested data is

placed at the first Xm (η;C) positions in the list of flowm, where Xm (η;C) is the number of data

items of flowm stored in the I-PLRU cache at time τ0. Notably, the same request result (hit or miss)

will occur at time τ0 if the flowm is organized by the LRU cache with a cache size Xm (η;C), since
the list of the data items remains the same.

Assume I (η;C) ≡ S (θ ;C). For any ϵ ∈ (0, 1), there exists C0 (ϵ), such that for all 1 ≤ m ≤ M
and any C > C0 (ϵ)

P [(1 − ϵ)θmC ≤ Xm (η;C) ≤ (1 + ϵ)θmC] = 1.

Therefore, letting QLRU

m (x) denote the miss probability of data flowm organized by a LRU cache

with cache space x , we have, for C > C0 (ϵ)

QLRU

m ((1 − ϵ)θmC) ≥ Q I-PLRU

m (η;C) ≥ QLRU

m ((1 + ϵ)θmC) . (11)

In addition, according to the result in [16], we have, as C → ∞

QSLRU

m (θ ;C) = QLRU

m (θmC)

∼
Γ(1 − 1/αm)αm

αm

cm
(θmC)αm−1

. (12)

Combining (11) and (12) finishes the proof. □

8.2 Proof of Theorem 4.4
Proof. First, we prove the theorem under the assumption that for 1 ≤ m ≤ M , there exists

βm ∈ (−1, 0] such that ηm ≳ C
β
m . Then we will show that the assumption only need to hold for ηM .

We use an induction argument to prove the theorem. First, for one flow, the I-PLRU paradigm is

exactly the same as the SLRU paradigm with the same cache space, i.e., θ1 = η1.
Then, assume that we have the equivalence mapping forM − 1 flows, i.e.,

I ((η1, · · · ,ηM−1);C) ≡ S
(
(θ◦

1
, · · · ,θ◦M−1);C

)
, (13)

based on which, we will investigate the equivalent SLRU paradigm forM data flows organized by

the I-PLRU paradigm I ((η1, · · · ,ηM−1,ηM);C). Assuming

I ((η1, · · · ,ηM−1,ηM);C) ≡ S ((θ1, · · · ,θM − 1,θM);C) ,

we will derive θm ’s as functions of θ◦m ’s. Let X̃i ((η1, · · · ,ηM−1);C), 1 ≤ i ≤ M−1 denote the number

of data items of flow i stored in the I-PLRU cache I ((η1, · · · ,ηM−1);C), and X j ((η1, · · · ,ηM);C),
1 ≤ j ≤ M , denote the number of data items of flow j in the I-PLRU cache I ((η1, · · · ,ηM);C).

The behavior of the I-PLRU paradigm I ((η1, · · · ,ηM);C) is the same as the behavior of the

caching paradigmM ((ρ1, · · · , ρM);C) introduced in Fig. 10, where ρiC = X̃i ((η1, · · · ,ηM−1);C),
1 ≤ i ≤ M − 1, and ρMC = ηMC . Recalling the assumption (13) and Definition 4.2, we have, as

C → ∞

X̃i ((η1, · · · ,ηM−1);C)

θ◦i C

a .s .
−→ 1. (14)

Therefore, for any ϵ ∈ (0, 1), there exists C0 (ϵ) such that for all C > C0 (ϵ) and 1 ≤ i ≤ M − 1

(1 − ϵ)θ◦i C ≤ X̃i ((η1, · · · ,ηM−1);C) ≤ (1 + ϵ)θ◦i C .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:22 G. Quan, et al.

Therefore, applying Lemma 8.1, we have for C > C0 (ϵ),

y−m ≤ θmC ≤ y+m , (15)

where

y+m = Γ (1 − 1/αm) cm
1/αm (t+m + νmz

+)1/αm for 1 ≤ m ≤ M,

y−m = Γ (1 − 1/αm) cm
1/αm (t−m + νmz

−)1/αm for 1 ≤ m ≤ M,

t+m =



(
(1+ϵ)θ ◦mC

Γ(1−1/αm)cm 1/αm

)αm
for 1 ≤ m ≤ M − 1,

0 form = M,

t−m =



(
(1−ϵ)θ ◦mC

Γ(1−1/αm)cm 1/αm

)αm
for 1 ≤ m ≤ M − 1,

0 form = M,

z+ is the unique solution of

M∑
m=1

Γ (1 − 1/αm) cm
1/αm (t+m + νmz

+)1/αm = (1 + ϵ)C,

and z− is the unique solution of

M∑
m=1

Γ (1 − 1/αm) cm
1/αm (t−m + νmz

−)1/αm = (1 − ϵ)C .

Define

ym = Γ (1 − 1/αm) cm
1/αm (tm + νmz)

1/αm
for 1 ≤ m ≤ M,

tm =



(
θ ◦mC

Γ(1−1/αm)cm 1/αm

)αm
for 1 ≤ m ≤ M − 1,

0 form = M,

and z is the unique solution of

M∑
m=1

Γ (1 − 1/αm) cm
1/αm (tm + νmz)

1/αm = C .

We have, for 1 ≤ m ≤ M

lim

C→∞

y−m
ym
= lim

C→∞

y+m
ym
= 1. (16)

Recalling (15), we have, for 1 ≤ m ≤ M

lim

C→∞

θmC

ym
= 1.

So far, we derive the equivalent I-PLRU paradigm forM data flows.

Using the induction argument, we can calculate the equivalent I-PLRU paradigm for any SLRU

paradigm. This induction argument is summarized as Algorithm 1.

Notably, if for 1 ≤ m ≤ M − 1, ηmC ∼ lm (C), where lm (·)’s are slowly varying functions that

satisfy limx→∞ lm (bx)/l (x) = 1 for any positive constant b, then the cache space occupied by each

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:23

flow in Bm ’s can be ignored compared with θmC as C → ∞. Therefore, the result still holds for
such ηm ’s. □

8.3 Proof of Theorem 4.5
Proof. We assume that the flow indices are sorted such that

(θm1
C)αm1

Γ(1 − 1/αm1
)αm1cm1

νm1

<
(θm2

C)αm2

Γ(1 − 1/αm2
)αm2cm2

νm2

, (17)

for any 1 ≤ m1 < m2 ≤ M . We will first prove that the insertion position of flowm1 is in front of

the insertion position of flowm2 for 1 ≤ m1 < m2 ≤ M .

Consider 2 flows (i.e., flow 1 and flow 2) organized by an I-PLRU cache I ((η̃1, η̃2);C), where
flow 1 is inserted at the head of the cache and flow 2 is inserted at η̃1C + 1. Theorem 4.4 implies

that the I-PLRU paradigm is equivalent to the SLRU paradigm S ((˜θ1, ˜θ2);C) where

˜θmC = Γ (1 − 1/αm) cm
1/αm (tm + νmz)

1/αm ,

t1 =

(
η̃1C

Γ(1 − 1/α1)c11/α1

)α1

,

t2 = 0,

and z is the unique solution of

Γ (1 − 1/αm) cm
1/αm (ν1z)

1/αm + Γ (1 − 1/αm) cm
1/αm (t2 + ν2z)

1/αm = C .

Thus, we have

(˜θ1C)
α1

Γ(1 − 1/α1)α1c1ν1
= t1/ν1 + z

> t2/ν2 + z =
(˜θ2C)

α2

Γ(1 − 1/α2)α2c2ν2
. (18)

Note that the inequality (18) is sufficient to guarantee that flow 1 is inserted in front of flow 2.

For M flows organized by the I-PLRU cache, the inequality (18) still holds. Therefore, under the

assumption (17), the flows are sorted such that the insertion position of flowm1 is in front of the

insertion position of flowm2 for 1 ≤ m1 < m2 ≤ M .

Next, we will use an induction argument to find the equivalent I-PLRU paradigm I (η;C). In each

iteration, there are two steps. In iteration 1, we will decide the insertion position for flowM . Given

the SLRU paradigm S (θ ;C), using Lemma 8.1, we can find the equivalentM (ρ (1)
;C) paradigm,

where

ρ (1)m C = Γ (1 − 1/αm) cm
1/αm tm

1/αm
for 1 ≤ m ≤ M − 1,

ρ (1)M C = C −
M−1∑
m=1

ρ (1)m C,

tm =




(
θmC

Γ(1−1/αm)cm 1/αm

)αm
− νmz for 1 ≤ m ≤ M − 1,

0 form = M,

z =
(θMC)

αM

Γ(1 − 1/αM)αM cMνM
.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:24 G. Quan, et al.

This is the first step. The second step for iteration 1 is simply letting ηM = ρM , i.e., the size of BM
is ρMC .

In iteration 2, we will decide the insertion position for flowM − 1. Notably, in the caching system

M (ρ (1)
;C), the caches 1, 2, · · · ,M − 1 can be viewed as a new SLRU system S (θ (2)

;C (2)), where
for 1 ≤ m ≤ M − 1,

θ (2)
m =

ρ (2)m∑M−1
i=1 ρ (2)i

, C (2) = C − ρMC .

The first step is to find the equivalentM (ρ (2)
;C (2)) paradigm for S (θ (2)

;C (2)) based on Lemma 8.1.

The second step is to construct the system shown in Fig. 11, where the firstM − 2 flows are served

by M − 2 separated LRU caches, and flows M − 1, M are served by an I-PLRU paradigm. Let the

Fig. 11. Identifying the insertion position for flowM − 1.

cache space of cachem be ρ (2)m C (2)
, 1 ≤ m ≤ M − 2. Let the cache space of the blocks BM−1, BM in

the I-PLRU paradigm be ρ (2)M−1C
(2)

and ρ (1)M C , respectively. Applying Lemma 8.1, we can prove that

the caching system shown in Fig. 11 is equivalent to the original SLRU system S (θ ;C).
So on so forth, repeating these two steps forM − 2 more iterations, we eventually find the I-PLRU

paradigm I (η;C) that is equivalent to the original SLRU architecture S (θ ;C), where

ηm = ρ (M−m+1)m C (M−m+1)/C, C (1) = C .

This induction process is summarized as Algorithm 2. □

8.4 Proof of Corollary 4.6
Proof. In Algorithm 2, a critical step is to update ti , 1 ≤ i ≤ m − 1, as

ti =

(
θiC

Γ(1 − 1/αi)ci 1/αi

)αi
− νiz,

where

z =

(
θmC

Γ(1 − 1/αm) (cmνm)1/αm

)αm
.

If we have αm < αi , then, as C → ∞

ti ∼

(
θiC

Γ(1 − 1/αi)ci 1/αi

)αi
. (19)

Combining (19) with the remaining steps of Algorithm 2, we prove Corollary 4.6. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:25

8.5 Proof of Theorem 4.7
Proof. Consider equivalent I-PLRU paradigm I (η;C) and SLRU paradigm S (θ ;C). First, assume

towards contradiction that I (η;C) ≡ S (θ̃ ;C), with limC→∞ θ̃m/θm , 1 for somem. Then, applying

Theorem 4.3, we know that the asymptotic miss probability achieved by S (θ ;C) and S (θ̃ ;C) are
different. Since I-PLRU achieves the same asymptotic miss probability as its equivalent SLRU

paradigm, S (θ ;C) and S (θ̃ ;C) cannot be both equivalent to I (η;C). We have a contradiction and

therefore prove θ̃ = θ .
Then, assume S (θ ;C) ≡ I (η;C) and S (θ ;C) ≡ I (η̃;C). Recall the proof of Theorem 4.5.

The equivalent I-PLRU configuration is obtained by constructing a two-level caching paradigm

M (ρ,C) (shown in Fig. 10) that is equivalent to S (θ ;C). Moreover, according to Lemma 8.1, if

there exist two caching paradigmsM (ρ,C) andM (ρ̃,C) that are both equivalent to S (θ ;C). Then
we must have either limC→∞ ρ̃m/ρm = 1, or limC→∞ ρ̃m/θm = limC→∞ ρm/θm = 0, 1 ≤ m ≤ M .

Note that ρM indicates the last insertion position of the equivalent I-PLRU. Thus, we have either

limC→∞ η̃M/ηM = 1. Applying the recursive argument used in Section 8.3, we can prove the

theorem. □

REFERENCES
[1] Memcached. http://memcached.org/.

[2] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. 2012. Workload analysis of a large-scale

key-value store. In ACM SIGMETRICS Performance Evaluation Review, Vol. 40. ACM, 53–64.

[3] Muhammad Abdullah Awais. 2016. Memory management: Challenges and techniques for traditional memory allocation

algorithms in relation with today’s real time needs. Advances in Computer Science: an International Journal 5, 2 (2016),
22–27.

[4] Sorav Bansal and Dharmendra S Modha. 2004. CAR: Clock with adaptive replacement.. In FAST, Vol. 4. 187–200.
[5] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. 2018. LHD: Improving cache hit rate by maximizing hit density. In

15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18). USENIX Association.

[6] Daniel S Berger, Ramesh K Sitaraman, and Mor Harchol-Balter. 2017. AdaptSize: Orchestrating the hot object memory

cache in a content delivery network.. In NSDI. 483–498.
[7] Stephen Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge university press.

[8] Jacob Brock, Chencheng Ye, Chen Ding, Yechen Li, Xiaolin Wang, and Yingwei Luo. 2015. Optimal cache partition-

sharing. In 2015 44th International Conference on Parallel Processing (ICPP). IEEE, 749–758.
[9] Weibo Chu, Mostafa Dehghan, Don Towsley, and Zhi-Li Zhang. 2016. On allocating cache resources to content

providers. In Proceedings of the 3rd ACM Conference on Information-Centric Networking. ACM, 154–159.

[10] Malcolm C Easton and Ronald Fagin. 1978. Cold-start vs. warm-start miss ratios. Commun. ACM 21, 10 (1978), 866–872.

[11] Gil Einziger, Roy Friedman, and BenManes. 2017. TinyLFU: A highly efficient cache admission policy. ACMTransactions
on Storage (TOS) 13, 4 (2017), 35.

[12] Ronald Fagin. 1977. Asymptotic miss ratios over independent references. J. Comput. System Sci. 14, 2 (1977), 222–250.
[13] Nicolas Gast and Benny Van Houdt. 2015. Transient and steady-state regime of a family of list-based cache replacement

algorithms. ACM SIGMETRICS Performance Evaluation Review 43, 1 (2015), 123–136.

[14] Nicolas Gast and Benny Van Houdt. 2017. TTL approximations of the cache replacement algorithms LRU(m) and

h-LRU. Performance Evaluation 117 (2017), 33–57.

[15] Ryo Hirade and Takayuki Osogami. 2010. Analysis of page replacement policies in the fluid limit. Operations research
58, 4-part-1 (2010), 971–984.

[16] Predrag R. Jelenković. 1999. Asymptotic approximation of the move-to-front search cost distribution and least-recently-

used caching fault probabilities. The Annals of Applied Probability 2 (1999), 430–464.

[17] Predrag R Jelenković and Xiaozhu Kang. 2007. LRU caching with moderately heavy request distributions. In 2007
Proceedings of the Fourth Workshop on Analytic Algorithmics and Combinatorics (ANALCO). SIAM, 212–222.

[18] Kaiyi Ji, Guocong Quan, and Jian Tan. 2018. Asymptotic miss ratio of LRU caching with consistent hashing. In IEEE
Conference on Computer Communications (INFOCOM 2018). Honolulu, USA.

[19] Song Jiang, Feng Chen, and Xiaodong Zhang. 2005. CLOCK-Pro: An effective improvement of the CLOCK replacement.

In USENIX Annual Technical Conference, General Track. 323–336.
[20] Song Jiang and Xiaodong Zhang. 2002. LIRS: An efficient low inter-reference recency set replacement policy to improve

buffer cache performance. ACM SIGMETRICS Performance Evaluation Review 30, 1 (2002), 31–42.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:26 G. Quan, et al.

[21] Mark S Johnstone and Paul R Wilson. 1998. The memory fragmentation problem: Solved?. In ACM Sigplan Notices,
Vol. 34. ACM, 26–36.

[22] Conglong Li and Alan L Cox. 2015. GD-Wheel: A cost-aware replacement policy for key-value stores. In Tenth European
Conference on Computer Systems. ACM, 5.

[23] Nimrod Megiddo and Dharmendra S Modha. 2003. ARC: A self-tuning, low overhead replacement cache. In FAST,
Vol. 3. 115–130.

[24] Elizabeth J O’neil, Patrick E O’neil, and Gerhard Weikum. 1993. The LRU-K page replacement algorithm for database

disk buffering. ACM Sigmod Record 22, 2 (1993), 297–306.

[25] Guocong Quan, Kaiyi Ji, and Jian Tan. 2018. LRU caching with dependent competing requests. In IEEE Conference on
Computer Communications (INFOCOM 2018). Honolulu, USA.

[26] Guocong Quan, Jian Tan, and Atilla Eryilmaz. 2019. Counterintuitive characteristics of optimal distributed LRU caching

over unreliable channels. In IEEE Conference on Computer Communications (INFOCOM 2019). Paris, France.
[27] Yannis Smaragdakis, Scott Kaplan, and Paul Wilson. 1999. EELRU: Simple and effective adaptive page replacement. In

ACM SIGMETRICS Conference on Measuring and Modeling of Computer Systems. ACM, 122–133.

[28] Jian Tan, Guocong Quan, Kaiyi Ji, and Ness Shroff. 2018. On resource pooling and separation for LRU caching.

Proceedings of the ACM on Measurement and Analysis of Computing Systems 2, 1 (2018), 5.
[29] Andrew S. Tanenbaum. 2001. Modern operating systems (2rd ed.). Prentice Hall Press, Upper Saddle River, NJ, USA.

[30] Paul R Wilson, Mark S Johnstone, Michael Neely, and David Boles. 1995. Dynamic storage allocation: A survey and

critical review. In Memory Management. Springer, 1–116.
[31] Yue Yang and Jianwen Zhu. 2016. Write skew and Zipf distribution: evidence and implications. ACM Transactions on

Storage (TOS) 12, 4 (2016), 21.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:27

A PROOF OF LEMMA 8.1
Before presenting the proof, we introduce some additional concepts and notations. Since the

requests are all independent, it is sufficient to prove the result for a given time (saying τ0) after the
system reaches its stationarity. Consider the two-level caching frameworkM (ρ;C) introduced in

Section 8. For 1 ≤ m ≤ M , n ∈ N, define

V (m)
i (n) =




1 if data d (m)
i is requested during [τ−n ,τ−1],

0 otherwise.

Define, for 0 ≤ m ≤ M − 1, n ∈ N,

W (m)
i (n) =




1 if data d (m)
i is not stored in cachem during [τ−(n+1),τ−n),

0 otherwise.

andW (M)
i (n) = 1. Let

ω = min

{
n :

M∑
m=1

∑
i≥1

V (m)
i (n)W (m)

i (n) = ρMC
}
. (20)

Note that the data items stored in cache M at time τ0 are determined by the requests during

[τ−ω ,τ−1] and independent with the requests before τ−ω . We have, for 1 ≤ m ≤ M

Ym (ρ;C) = ρmC +
∑
i≥1

V (m)
i (ω)W (m)

i (ω).

Notably,

∑
i≥1V

(m)
i (ω)W (m)

i (ω) is the total size of distinct data items that are requested by flowm
during [τ−ω ,τ−1] and not stored in cachem right before τ−ω .
Define Sm (n) as the total size of distinct data items of n requests from flowm for 1 ≤ m ≤ M .

DefineTm = min{n : Sm (n) = ρmC} for 1 ≤ m ≤ M − 1 andTM = 0. Let nm =
∑−1

i=−ω 1{Ii=m } denote
the number of requests that are from flowm during [τ−ω ,τ−1], 1 ≤ m ≤ M . Since the requests are

all independent, we have

Ym (ρ;C) =
∑
i≥1

V (m)
i (ω)W (m)

i (ω) + ρmC
d
= Sm (Tm + nm), (21)

given the condition that

∑M
m=1 Sm (Tm + nm) = C , where X

d
= Y denotes that the random variables

X and Y have the same probability distribution.

Define, for 1 ≤ m ≤ M ,

sm (n) = Γ (1 − 1/αm) cm
1/αmn1/αm . (22)

Recalling (10), we have ym = sm (tm +νmz) and
∑M
m=1 sm (tm +νmz) = C . Before proving Lemma 8.1,

we first establish the following lemma showing that Sm (n) is concentrated around sm (n) with high

probability when n is large.

Lemma A.1. For ϵ ∈ (0, 1), there exists a constant Nm (ϵ) that for all n > Nm (ϵ) and 1 ≤ m ≤ M ,

P[Sm (n) ≥ (1 + ϵ)sm (n)] ≤ exp(−ϵ2sm (n)/36).

Proof. First, we will show that as n → ∞, E[Sm (n)] ∼ sm (n). Recalling the definition of Sm (n),
we have

E[Sm (n)] =
∞∑
i=1

(
1 −

(
1 − p (m)

i

)n)
.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:28 G. Quan, et al.

As n → ∞, we have
∞∑
i=1

(
1 −

(
1 − p (m)

i

)n)
∼

∞∑
i=1

(
1 −

(
1 −

cm
iαm

)n)
∼

∞∑
i=1

(
1 − exp

(cmn
iαm

))
∼

∫ ∞

1

(
1 − exp

(cmn
tαm

))
dt

∼ Γ (1 − 1/αm) cm
1/αmn1/αm

= sm (n),

which implies E[Sm (n)] ∼ sm (n), i.e., limn→∞ E[Sm (n)]/sm (n) = 1.
Therefore, for any ϵ ∈ (0, 1), there always exists Nm (ϵ) such that for all n > Nm (ϵ) E[Sm (n)] ≤

(1 + ϵ/2)sm (n). Therefore, for n > Nm (ϵ), we have

P [Sm (n) ≥ (1 + ϵ)sm (n)] ≤ P

[
Sm (n) ≥

1 + ϵ

1 + ϵ/2
E[Sm (n)]

]

≤ P [Sm (n) ≥ (1 + ϵ/3)E[Sm (n)]]

Then, applying Lemma 7.1 in [28], we complete the proof. □

Now we are ready to prove Lemma 8.1.

Proof. Recalling (10), (21) and (22), in order to prove (9), it is sufficient to show

Sm (Tm + nm)

sm (tm + νmz)

a .s .
−→ 1, as C → ∞. (23)

To prove this, we will first show

Sm (Tm + nm)

sm (tm + νmω)

a .s .
−→ 1, as C → ∞. (24)

We need prove that for any ϵ ∈ (0, 1), the events{
Sm (Tm + nm) > (1 + ϵ)sm (tm + νmω) | the total cache space is C

}∞
C=1

and

{Sm (Tm + nm) < (1 − ϵ)sm (tm + νmω) | the total cache space is C}
∞
C=1

are not infinitely often (i.o.) almost surely, i.e.,

P [Sm (Tm + nm) > (1 + ϵ)sm (tm + νmω) i.o. | the total cache space is C] = 0, (25)

P [Sm (Tm + nm) < (1 − ϵ)sm (tm + νmω) i.o. | the total cache space is C] = 0. (26)

In order to prove P [Sm (Tm + nm) > (1 + ϵ)sm (tm + νmω) i.o. | the total cache space is C] = 0, we

will show

∞∑
C=1

P [AC] < ∞ (27)

and then apply the Borel-Cantelli lemma, where

AC ≜ {Sm (Tm + nm) > (1 + ϵ)sm (tm + νmω) | the total cache size is C}.

In the rest of the proof, we always assume that the total cache size is C and do not write it as the

condition for simplicity. We first prove the lemma with the assumption that for 1 ≤ m ≤ M , there

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:29

exists βm ∈ (−1, 0] such that ρm ≳ Cβm
. Then we will show that the result is still correct if the

firstM − 1 flows do not satisfy this assumption.

Define E+
1
= {nm > (1 + ϵ/2)νmω} and E

−
1
= {nm < (1 − ϵ/2)νmω}. We can bound P[AC] by

P[AC] = P[Sm (Tm + nm) > (1 + ϵ)sm (tm + νmω)]

≤ P
[
Sm (Tm + nm) > (1 + ϵ)sm (tm + νmω)

����E
+
1

c
∩ E−

1

c
]

+ P
[
E+
1

]
+ P

[
E−
1

]
, (28)

where E+
1

c
and E−

1

c
denote the complements of E+

1
and E−

1
, respectively.

The remaining proof for (27) consists of two steps. We will first derive an upper bound for

P[Sm (Tm + nm) > (1 + ϵ)sm (tm + νmω) |E
+
1

c
∩ E−

1

c
] in Step 1, and then derive upper bounds for

P[E+
1
] and P[E−

1
] in Step 2.

Step 1: P[Sm (Tm + nm) > (1 + ϵ)sm (tm + νmω) |E
+
1

c
∩ E−

1

c
] can be upper bounded as

P
[
Sm (Tm + nm) > (1 + ϵ)sm (tm + νmω)

����E
+
1

c
∩ E−

1

c
]

≤ P
[
Sm (Tm + nm) > (1 + ϵ)sm (tm + nm/(1 + ϵ/2))

����E
+
1

c
∩ E−

1

c
]

= P

[
Sm (Tm + nm) >

1 + ϵ

(1 + ϵ/2)1/αm
sm ((1 + ϵ/2)tm + nm)

����E
+
1

c
∩ E−

1

c
]

≤ P
[
Sm (Tm + nm) > (1 + ϵ/3)sm ((1 + ϵ/2)tm + nm)

����E
+
1

c
∩ E−

1

c
]

≤ P
[
Sm (Tm + nm) > (1 + ϵ/3)sm ((1 + ϵ/2)tm + nm)

����E
+
1

c
∩ E−

1

c
,Tm < (1 + ϵ/2)tm

]

+ P
[
Tm ≥ (1 + ϵ/2)tm

����E
+
1

c
∩ E−

1

c
]

= P
[
Sm ((1 + ϵ/2)tm + nm) > (1 + ϵ/3)sm ((1 + ϵ/2)tm + nm)

����E
+
1

c
∩ E−

1

c
]

+ P
[
Tm ≥ (1 + ϵ/2)tm

����E
+
1

c
∩ E−

1

c
]

≜ I1 + I2.

Note that since nm is a random variable, we cannot directly use Lemma A.1 to bound I1. Given
{E+

1

c
∩ E−

1

c
}, we have

sm ((1 + ϵ/2)tm + nm) > sm ((1 + ϵ/2)tm + (1 − ϵ/2)nm)

> sm ((1 − ϵ) (tm + νmω)).

Recalling (20), we have ω > ρMC . Lemma A.1 implies that there always existsC1,m (ϵ) such that for

all C > C1,m (ϵ),

I1 ≤ exp(−ϵ2sm ((1 − ϵ) (tm + νmρMC))/324)

= exp

(
−ϵ2 (1 − ϵ)1/αmsm (tm + νmρMC)/324

)
≤ exp

(
−ϵ2 (1 − ϵ)1/αmsm (νmρMC)/324

)
= exp

(
−
ϵ2 (1 − ϵ)1/αm

324

Γ

(
1 −

1

αm

)
(cmνmρMC)

1/αm

)
. (29)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:30 G. Quan, et al.

Similarly, I2 can be upper bounded by Lemma A.1. Recall Sm (Tm) = sm (tm) = ρmC . Lemma A.1

yields that there exists C2,m (ϵ) such that for all C > C2,m (ϵ)

I2 = P
[
Sm ((1 + ϵ/2)tm) ≤ Sm (Tm)

����E
+
1

c
∩ E−

1

c
]

= P [Sm ((1 + ϵ/2)tm) ≤ ρmC]

= P
[
Sm ((1 + ϵ/2)tm) ≤ (1 + ϵ/2)−1/αmsm ((1 + ϵ/2)tm)

]

≤ exp

(
−((1 + ϵ/2)1/αm − 1)2sm ((1 + ϵ/2)tm)/36

)
≤ exp

(
−((1 + ϵ/2)1/αm − 1)2sm (tm)/36

)
≤ exp

(
−
ϵ2ρmC

324αm2

)
. (30)

Combining (29) and (30) implies that, for any ϵ ∈ (0, 1) and C > max{Ck,m (ϵ) : 1 ≤ k ≤ 2},

P
[
Sm (Tm + nm) > (1 + ϵ)sm (tm + νmz)

����E
+
1

c
∩ E−

1

c
]

≤ exp

(
−
ϵ2 (1 − ϵ)1/αm

324

Γ

(
1 −

1

αm

)
(cmνmρMC)

1/αm

)
+ exp

(
−
ϵ2ρmC

324αm2

)
. (31)

Up to now, we finish Step 1.

Step 2: To complete the proof, we will derive upper bounds for P[E−
1
] and P[E+

1
] in Step 2. Note

that E[nm |ω] = νmω. Applying the Chernoff bound and the fact that ω > ρMC , we have

P
[
E−
1

]
= P [nm < (1 − ϵ/2)νmω] ≤ exp

(
−
ϵ2νmρMC

8

)
(32)

and

P
[
E+
1

]
= P [nm > (1 + ϵ/2)νmω] ≤ exp

(
−
ϵ2νmρMC

8

)
. (33)

Combining (28), (31), (32) and (33) implies that, for any ϵ ∈ (0, 1) and C > max{Ck,m (ϵ) : 1 ≤
k ≤ 2},

P[AC] ≤ exp

(
−
ϵ2 (1 − ϵ)1/αm

324

Γ

(
1 −

1

αm

)
(cmνmρMC)

1/αm

)
+ exp

(
−
ϵ2ρmC

324αm2

)
+ 2 exp

(
−
ϵ2νmρMC

8

)
.

Recall the assumption that for 1 ≤ m ≤ M , there exists βm ∈ (−1, 0] such that ρm ≳ Cβm
. We

have

∑∞
C=1 P[AC] < ∞, which implies (25) by applying the Borel-Cantelli lemma. Using a similar

approach we can prove (26). Combining (25) and (26) yields (24). Combining (24) and the fact that∑M
m=1 sm (tm + νmz) =

∑M
m=1 Sm (Tm + nm) = C , we prove (23).

Notably, the result still holds when ρmC ∼ lm (C) for 1 ≤ m ≤ M − 1, where lm (·)’s are slowly
varying functions that satisfy limx→∞ lm (bx)/lm (x) = 1 for any positive constant b, because in this

case, tm + νmz is dominated by νmz and Ym (ρ;C) is almost surely dominated by the cache space

occupied by flowm in cacheM , 1 ≤ m ≤ M , as the total cache size C → ∞. □

Received February 2019; revised March 2019; accepted April 2019

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Existing Approaches
	3.1 Separated LRU (SLRU) Caching
	3.2 Pooled LRU (PLRU) Caching
	3.3 Limitations of SLRU & PLRU

	4 A New Flexible Cache Management Paradigm
	4.1 Definition of I-PLRU
	4.2 Equivalence Mapping Between I-PLRU and SLRU Paradigms
	4.3 Optimal I-PLRU Configuration

	5 Discussions on Engineering Issues
	5.1 General popularity distributions and non-identical data sizes
	5.2 Unknown popularity distributions

	6 Experiments
	7 Conclusion
	8 Proofs
	8.1 Proof of Theorem 4.3
	8.2 Proof of Theorem 4.4
	8.3 Proof of Theorem 4.5
	8.4 Proof of Corollary 4.6
	8.5 Proof of Theorem 4.7

	References
	A Proof of Lemma 8.1

