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On Resource Pooling and Separation for LRU Caching

JIAN TAN, GUOCONG QUAN, KAIYI JI, and NESS SHROFF, The Ohio State University, USA

Caching systems using the Least Recently Used (LRU) principle have now become ubiquitous. A fundamental

question for these systems is whether the cache space should be pooled together or divided to serve multiple

flows of data item requests in order to minimize the miss probabilities. In this paper, we show that there is no

straight yes or no answer to this question, depending on complex combinations of critical factors, including,

e.g., request rates, overlapped data items across different request flows, data item popularities and their sizes.

To this end, we characterize the performance of multiple flows of data item requests under resource pooling

and separation for LRU caching when the cache size is large.

Analytically, we show that it is asymptotically optimal to jointly serve multiple flows if their data item sizes

and popularity distributions are similar and their arrival rates do not differ significantly; the self-organizing

property of LRU caching automatically optimizes the resource allocation among them asymptotically. Other-

wise, separating these flows could be better, e.g., when data sizes vary significantly. We also quantify critical

points beyond which resource pooling is better than separation for each of the flows when the overlapped

data items exceed certain levels. Technically, for a broad class of heavy-tailed distributions we derive the

asymptotic miss probabilities of multiple flows of requests with varying data item sizes in a shared LRU cache

space. It also validates the characteristic time approximation under certain conditions. These results provide

new insights on improving the performance of caching systems.
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1 INTRODUCTION
Caching systems using the Least Recently Used (LRU) principle are already widely deployed but

need to efficiently scale to support emerging data applications. They have very different stochastic

dynamics [17, 18, 28, 38, 40, 45, 46, 49, 61, 76, 82] than well-studied queueing systems. One cannot

apply the typical intuition of resource pooling for queueing, e.g., [15, 23, 52, 62, 80], to caching.

To serve multiple flows of data item requests, a fundamental question is whether the cache space

should be pooled together or divided (see Fig. 1) in order to minimize the miss probabilities (a.k.a.

miss ratios).

A request is said to “miss” if the corresponding data item is not found in the cache; otherwise

a “hit” occurs. For a web service each miss often incurs subsequent work at a backend database,
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Fig. 1. Flows served separately and jointly

resulting in overhead as high as a few milliseconds or even seconds [86]. A study on Facebook’s

memcached workloads shows that a small percentage of miss ratio on one server can trigger

millions of requests to the database per day [9, 88]. Thus, even a minor increase in the hit ratio can

significantly improve system performance. To further motivate the problem, we examine the cache

space allocation for in-memory key-value storage systems.

1.1 Background and current practice
In-memory cache processing can greatly expedite data retrieval, since data are kept in Random

Access Memory (RAM). In a typical key-value cache system, e.g., Memcached [1, 39], a data item

is added to the cache after a client has requested it and failed. When the cache is full, an old data

item has to be evicted to make room for the new one. This selection is determined by the caching

algorithm. Different caching algorithms have been proposed [60, 66]. However, due to the cost

of tracking access history, often only LRU or its approximations [83] are adopted [9]. The LRU

algorithm replaces the data item that has not been used for the longest period of time.

The current engineering practice is to organize servers into pools based on applications and data

domains [9, 27, 69]. On a server, the cache space is divided into isolated slabs according to data

item sizes [1, 88]. Note that different servers and slabs have separate LRU lists. These solutions

have yielded good performance [1, 31, 88], through coarse level control on resource pooling and

separation. However, it is not clear whether these rules of thumb are optimal allocations, or whether

one can develop simple solutions to further improve the performance.

1.2 The optimal strategy puzzle
These facts present a dilemma. On the one hand, multiple request flows benefit from resource

pooling. For example, a shared cache space that provides sufficiently high hit ratios for two flows

can improve the utilization of the limited RAM space, especially when the two flows contain

overlapped common data items so that a data item brought into cache by one flow can be directly

used by the other. On the other hand, resource separation facilitates capacity planning for different

flows and ensures adequate quality of service for each. For example, a dedicated cache space can

prevent one flow with a high request rate from evicting too many data items of another competing

flow on the same cache [9].

This dilemma only scratches the surface of whether resource pooling or separation is better for

caching. Four critical factors complicate the problem and jointly impact the cache miss probabilities,

including request rates, overlapped data items across different request flows, data item popularities

and their sizes. Depending on the setting, they may lead to different conclusions. Below we

demonstrate the complexity of the optimal strategy using three examples, showing that resource

pooling can be asymptotically equal to, better or worse than separation, respectively. Consider two

independent flows (1 and 2) of requests with Poisson arrivals of rates ν1 and ν2, respectively. The

data items of the two flows do not overlap and have unit sizes unless explicitly specified. Their

popularities follow truncated Zipf’s distributions, p (1)i = c1/i
α1

and p (2)j = c2/j
α2 , 1 ≤ i, j ≤ N ,

where i, j are the indeces of the data items of flow 1 and 2, respectively. For pooling, two flows
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share the whole cache. For separation, the cache is partitioned into two parts using fractions u1

and u2, to serve flow 1 and 2 separately, u1 + u2 = 1,u1,u2 ≥ 0.

Case 1: Asymptotic equivalence
The optimal resource separation scheme has recently been shown to be better than pooling [29]

under certain assumptions based on the characteristic time approximation [28, 38]. However, it

is not clear whether the difference is significant or not, especially when the cache size is large (a

typical scenario). The first example shows that they can be quite close. Notably resource pooling is

self-organizing and need not optimize separation fractions u1. For α1 = 1.5,α2 = 4.0,ν1 = 0.1,ν2 =

0.9,N = 10
6
, we plot the overall miss ratios under resource pooling and the optimal separation in

Fig. 2, respectively. The optimal ratio u1 for separation is obtained numerically by an exhaustive

search. When the cache size is small, the optimal separation strategy achieves a lower miss ratio

Fig. 2. Asymptotically equal miss ratios

than resource pooling. However, for large cache sizes, the miss ratios are indistinguishable. This is

not an coincidence, as shown by Theorem 4.1. Note that the cache sizes take integer values, thus u1

varying up and down.

Case 2: Pooling is better
The previous example shows that resource pooling can adaptively achieve the best separation

fraction when the cache space is large. Consider two flows with α1 = α2 = 2,N = 10
6
and time-

varying Poisson request rates. ForT = 10
6
, let ν1 = 0.1,ν2 = 0.9 in the time interval [2kT , (2k +1)T )

and ν1 = 0.9,ν2 = 0.1 in [(2k + 1)T , (2k + 2)T ), k = 0, 1, 2, · · · . The simulation results in Fig. 3

Fig. 3. Benefits of pooling due to self-organization

show that resource pooling yields a smaller miss probability, which primarily attributes to the
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self-organizing property characterized by Theorem 4.1. Specifically, resource pooling can adaptively

achieve the optimal overall miss ratio after an adjustment period in each interval [kT , (k + 1)T ),
k = 0, 1, 2, · · · , while a static separation method cannot always be optimal. The optimal static

separation ratio in this case is u1 = 0.5 due to symmetry.

Case 3: Separation is better
Assume that the data items from flow 1 and flow 2 have different sizes 1 and 4, respectively, with

N = 10
6,α1 = α2 = 2,ν1 = ν2 = 0.5. The simulation results in Fig. 4 show that the optimal

separation yields a better performance due to varying data item sizes, which is supported by

Theorem 4.1. This may explain why in practice it is beneficial to separate cache space according to

applications, e.g., text and image objects, which could have significantly different item sizes [69, 87].

What if the data item sizes are equal? Fig. 2 is an example that separation is better when the cache

space is small even with equal data item sizes. However, a small cache may not be typical for

caching systems.

Fig. 4. Benefits of separation due to isolation

These examples motivate us to systematically study the miss probabilities for competing flows

with different rates, distributions, and partially overlapped data items of varying sizes. Our analytical

results can be used to explain the puzzling performance differences demonstrated in the previous

three examples.

1.3 Summary of contributions
(1) An analytical framework under the independent reference model (IRM) [32] is proposed to

address four critical factors for LRU caching: request rates, distributions, data item sizes and the

overlapped data items across different flows. We derive the asymptotic miss probabilities of multiple

flows of requests with varying data item sizes in a shared LRU cache space for a broad class of

heavy-tailed distributions, including regularly varying distributions and heavy-tailed Weibull.

These asymptotic results validate the characteristic time approximation [28, 38] under certain

conditions.

(2) Based on the miss probabilities for both the aggregated and the individual flows, we provide

guidance on whether multiple competing flows should be served together or not. First, we show that

when the flows have similar distributions and equal data item sizes, the self-organizing property of

LRU can adaptively search for the optimal resource allocation for shared flows. As a result, the

overall miss probability of the aggregated flows is asymptotically equal to the miss probability

using the optimal static separation scheme. In addition, if the request rates of these flows are

close, the miss probabilities of individual flows when served jointly differ only by a small constant

factor compared to the case when they are served separately. Otherwise, either some of the request
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flows will be severely penalized or the total miss ratio will become worse. In that case, it is better

to separately serve them. Second, we consider multiple flows with overlapped data. When the

overlapped data items exceed a certain level, there exists a region such that every flow can get a

better hit ratio. However, if not in this region, e.g., when the arrival rates are very different, some

flows will be negatively impacted by other competing flows. Based on the analysis, we discuss

engineering implications.

(3) Extensive simulations are conducted to verify the theoretical results. We design a number of

simulations, with different purposes and emphases, and show an accurate match with theoretical

results.

1.4 Related work
LRU caching is a self-organizing list [2, 3, 5, 21, 22, 37, 51, 53, 73] that has been extensively studied.

There are two basic approaches to conduct the analysis: combinatorial and probabilistic. The first

approach focuses on the classic amortized [16, 24, 75, 78, 79] and competitive analysis [8, 25, 30, 55,

63]. The second approach includes average case analysis [4, 67, 77] and stochastic analysis [14, 35, 41–

43, 68]. When cache sizes are small, the miss probabilities can be explicitly computed [10–12, 50].

For large cache sizes, a number of works (e.g., [17, 44, 48, 61, 74]) rely on the characteristic time

approximation [28, 38], which has been extended to cache networks [17, 44, 47, 48, 64, 76]. For

fluid limits as scaling factors go to infinity (large cache sizes), mean field approximations of the

miss probabilities have been developed [49, 54, 84]. For emerging data processing systems, e.g.,

Memcached [1], since the cache sizes are usually large and the miss probabilities are controlled to be

small, it is natural to conduct the asymptotic analysis of the miss probabilities [56–59]. Although the

miss ratios are small, they still significantly impact the caching system performance. Nevertheless,

most existing works do not address multiple competing request flows on a shared cache space,

which can impact each other through complicated ways.

Workload measurements for caching systems [6, 7, 9, 26, 33, 36, 65] are the basis for theoretical

modeling and system optimization. Empirical trace studies show that many characteristics of Web

caches can be modeled using power-law distributions [7, 89], including, e.g., the overall data item

popularity rank, the document sizes, the distribution of user requests for documents [6, 13, 26, 65],

and the write traffic [89]. Similar phenomena have also been found for large-scale key-value

stores [9]. These facts motivate us to exploit the heavy-tailed workload characteristics.

Web and network caching is closely related to this study with a large body of dedicated works;

see the surveys [71, 85] and the references therein. Recently a utility optimization approach [29, 34]

based on the characteristic time approximation [17, 28, 38] has been used to study cache sharing and

partitioning. It has concluded that under certain settings the optimal resource separation is better

than pooling. However, it is not clear whether the difference is significant or not, especially when

the cache size is large for a typical scenario. We show that a simple LRU pooling is asymptotically

equivalent to the optimal separation scheme under certain settings, which is significant since the

former is adaptive and does not require any configuration or tuning optimization. We focus on the

asymptotic miss probabilities for multiple competing flows, as the miss ratio is one of the most

important metrics for caching systems with large cache sizes in practice.

2 MODEL AND INTUITIVE RESULTS
ConsiderM flows of i.i.d. random data item requests that are mutually independent. Assume that

the arrivals of flow k follow a Poisson process with rate λk > 0, 1 ≤ k ≤ M . The arrivals of the

mixedM request flows occur at time points {τn ,−∞ < n < +∞}. Let In be the index of the flow for

the request at τn . The event {In = k } represents that the request at τn originates from flow k . Due
to the Poisson assumption, we have P[In = k] = λk/ (

∑
i λi ).
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To model the typical scenario that the number of distinct data items far exceeds the cache size,

we assume that each flow can access an infinite number of data items. Formally, flow k accesses the

set of data items d (k )
i , i = 1, 2, · · · ,∞, 1 ≤ k ≤ M , from which only a finite number can be stored in

cache due to the limited capacity. Let s (k )i denote the size of data item d (k )
i . Note that it is possible,

and even common in practice, to observe d (k )
i ≡ d

(д)
j for flows k and д, where “≡” means that the

two involved data items are the same. Therefore, this model describes the situation when data items

can overlap between different flows. For example, in Fig. 5, we have d (1)
4
≡ d (2)

2
, d (1)

5
≡ d (2)

3
and

Fig. 5. Data items overlap between two flows

d (1)
8
≡ d (2)

5
. Let Rn denote the requested data item at time τn . Thus, the event {In = k,Rn = d (k )

i }

means that the request at time τn is from flow k to fetch data item d (k )
i . We also abuse the notation

for Rn a bit and define P[R0 > x | I0 = k] to be the probability that the request at time τ0 is to

fetch a data item with an index larger than x in the ordered list

(
d (k )
i , i = 1, 2, 3, · · ·

)
of flow k . The

ordering will be specified in the following part.

When the system reaches stationarity (Theorem 1 of [56]), the miss ratio of the system is equal

to the probability that a request R0 at time τ0 = 0 finds that its asked data item is not kept in the

cache. Therefore, we only need to consider R0 in the following part. Due to multiple request flows,

we have two sets of probabilities for each flow. Flow k experiences the unconditional probabilities

P
[
R0 = d

(k )
i

]
= p (k )i , i = 1, 2, 3, · · · (1)

and the conditional probabilities

P
[
R0 = d

(k )
i

���I0 = k
]
= q (k )i , i = 1, 2, 3, · · · (2)

In general, q (k )i can be very different from p (k )i , since the multiple request flows not only access

distinct data items, but also share common data items, as shown in Fig. 5. Note that we have

p (k )i =

M∑
j=1

νjP
[
R0 = d

(k )
i

���I0 = j
]
, (3)

where νj ≜ P[I0 = j]. When there are no overlapped data items across different flows, we have

p (k )i = νkq
(k )
i . Specially, if there is only a single flow k , i.e., P[I0 = k] = 1, then q (k )i = p

(k )
i for all i .

For multiple request flows, they are coupled through (3), since a data item requested by flow k is

more likely to be found in the cache when it has recently been requested by other flows. In this

case, the usual belief is to pool these flows together, so that one flow can help the others to increase

the hit. However, if the fraction of overlapped data items is not significant enough, it is intuitively

inevitable that the help obtained from other flows on these common data items will be limited.

There have been no analytical studies to quantify the effects on how the overlapped data can help

different flows.

When studying flow k , assume that the data items d (k )
i are sorted such that the sequence p (k )i

is non-increasing with respect to i . Given (3), the sequence q (k )i is not necessarily non-increasing

by this ordering. The miss ratio depends on the popularities q (k )i and p (k )i , i ≥ 1, 1 ≤ k ≤ M .
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Interestingly, it can be characterized by the following functional relationship Φk (·) for flow k ,
1 ≤ k ≤ M , in a neighborhood of infinity,

*.
,

∞∑
i=y

q (k )i
+/
-

−1

∼ Φk

((
p (k )y

)−1

)
, y → ∞. (4)

Note f (x ) ∼ д(x ) means limx→∞ f (x )/д(x ) = 1. The values in (4) are defined using reciprocals,

as both

(∑∞
i=y q

(k )
i

)−1

and

(
p (k )y

)−1

take values in [1,∞), in line with the condition that Φk (·) is

defined in a neighborhood of infinity. In the proof of Theorem 3.1, we show that this functional

relationship can be leveraged to characterize the asymptotic miss ratios explicitly. We consider the

following class of heavy-tailed distributions

lim

n→∞
q (k )n /q

(k )
n+1
= 1. (5)

It includes heavy-tailed Weibull distributions q (k )n ∼ d exp (−cnα ), c,d > 0, 0 < α < 1, and Zipf’s

distributions q (k )n ∼ c/nα , c,α > 0.

It has been shown [41, 43, 56, 59] that the miss probability of LRU is equivalent to the tail of

the searching cost distribution under move-to-front (MTF). For MTF, the data items are sorted in

increasing order of their last access times. Each time a request is made for a data item, this data

item is moved to the first position of the list and all the other data items that were before this one

increase their positions in the list by one.

Definition 2.1. Define Cn to be the summation of the sizes for all the data items in the sorted list

under MTF that are in front of the position of the data item requested by Rn at time τn .

If the cache size is x , then a cache miss under MTF, which is equivalent for LRU policy, can be

denoted by {Cn > x }. For a special case when the data item sizes satisfy s (k )i ≡ 1 for all k, i , the
event {Cn > x } means the position of the data item in the list is larger than x under MTF.

For theM flows mixed together, let {di , i = 1, 2, · · · } denote the set of data items requested by

the entirety of these flows, with P[R0 = di ] = p
◦
i . Let si denote the size of data item di and assume

s̄ ≜ supi si < ∞. In general, si can take different values when data item sizes vary. LetM (n) denote
the total size of all the distinct data items that have been requested on points {τ−1,τ−2, · · · ,τ−n }.
Define

m(z) =
∞∑
i=0

si
(
1 −

(
1 − p◦i

)z ) . (6)

We havem(n) = E[M (n)]. Sincem(z) is strictly increasing, its inverse functionm← (z) exists and
is related to the characteristic time approximation [28, 38]. We can analytically derivem← (z) in
some typical cases, as shown in Corollaries 3.3 and 3.5, which directly exploit the properties of the

popularity distributions, different from the characteristic time approximation.

One of our main results can be informally stated as follows; the rigorous version is presented in

Theorem 3.1. Recall a gamma function Γ(βk + 1) =
∫ ∞

0
yβk e−ydy.

Miss ratio (informal description) For M flows sharing a cache, if Φk (x ), 1 ≤ k ≤ M , is
approximately a polynomial function (≈ x βk ), then, under mild conditions, we obtain, when the cache
size x is large enough,

P[miss ratio of flow k] ≈
Γ(βk + 1)

Φk (m← (x ))
. (7)
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Based on this result, we derive the following engineering implications for M flows of data

item requests with q (k )i ∼ ck/i
αk
, αk ≥ 1, 1 ≤ k ≤ M .

• Asymptotically equal: ForM flows of disjoint requests with identical item sizes, the overall

miss ratio achieved by resource pooling is asymptotically equal to that achieved by the

optimal separation method. This is referred to as the self-organizing behavior of resource

pooling (see Section 4.1).

• Separation is better: ForM flows of disjoint requests with various item sizes, the optimal

resource separation achieves a lower overall miss ratio than resource pooling; see Section 4.1.

• Pooling is better: ForM flows of disjoint requests with identical item sizes, if the statistics,

such as request rates, are time-varying, a static separation method cannot always achieve the

optimal overall miss ratio. However, due to the self-organizing behavior, resource pooling

adaptively adjusts to the optimal solution, as long as the statistics are relatively stable before

it converges. Moreover, if there are overlapped data items across these flows, resource pooling

can achieve a lower overall miss ratio than the optimal separation. Particularly, the asymptotic

miss ratio of each individual flow can be lower under resource pooling, if certain parameters

are in a good region as shown in Section 4.3.

Sketch of the proof: First, we derive a representation for the miss probability of the request R0.

Similar arguments have been used in [46, 56] but we take a different approach. Among all the

requests that occur before τ0 = 0 we find the last one that also requests data item R0. More

formally, define −σ to be the largest index of the request arrival before τ0 such that R−σ = R0.

Conditional on {R0 = d (k )
i }∩{I0 = k }, the following requests R−1,R−2,R−3, · · · are i.i.d, satisfying

P
[
R−j = d

(k )
i |{R0 = d

(k )
i }∩{I0 = k }

]
= p (k )i , j ≥ 1, which implies

P
[
σ > n |{R0 = d

(k )
i } ∩ {I0 = k }

]
=

(
1 − p (k )i

)n
.

Thus, unconditional on R0, we obtain, recalling (1) and (2),

P
[
σ > n |I0 = k

]
=

∞∑
i=1

q (k )i

(
1 − p (k )i

)n
. (8)

Now we argue that the event {C0 > x } is completely determined by the requests at the time

points {τ−1,τ−2, · · · ,τ−σ }. Recall thatM (n) is the total size of all the distinct data items that have

been requested on points {τ−1,τ−2, · · · ,τ−n }. Define the inverse function ofM (n) to beM← (x ) =
min{n : M (n) ≥ x }. We claim that

{C0 > x } = {σ > M← (x )}. (9)

If the event {σ > M← (x )} happens, the total size of the distinct data items requested on the time

interval (τ−σ , 0) is no smaller than x and these data items are different from the one that is requested

at time τ0 (or τ−σ ). Due to the equivalence of LRU and MTF, when R0 arrives at τ0, all of the data

items requested on (τ−σ , 0) will be listed in front of it under MTF. Combining these two facts we

obtain {σ > M← (x )} ⊆ {C0 > x }. If {C0 > x } occurs, then after τ−σ when R0 is listed in the first

position of the list, there must be enough distinct data items that have been requested on (τ−σ , 0)
so that their total size exceeds or reaches x . This yields {C0 > x } ⊆ {σ > M← (x )}, which proves (9)

and implies

P[C0 > x |I0 = k] = P[σ > M← (x ) |I0 = k]. (10)

In order to compute P[σ > M← (x ) |I0 = k], we take two steps. The first step is to show

P[σ > n |I0 = k] ≈ Γ(βk + 1)/Φk (n).
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The second step is to relateM← (x ) tom← (x ) as x → ∞.
Here, we provide an intuitive proof for βk > 0. From (8), we have

P
[
σ > n |I0 = k

]
=

∞∑
i=1

q (k )i (1 − p (k )i )
n
≈

∞∑
i=1

q (k )i e−np
(k )
i . (11)

In order to approximate the summation (11) and obtain an explicit expression, we use the functional

relationship Φk (·) for flow k introduced in (4). Combining (4) and (11), we have, for Qi =
∑∞

j=i q
(k )
j ,

P
[
σ > n |I0 = k

]
≈

∞∑
i=1

q (k )i e
−n

/
Φ←k

((∑∞
j=i q

(k )
j

)−1
)
=

∞∑
i=1

(Qi −Qi+1)e
−n

/
Φ←k (Q

−1

i )

≈

∫
1

0

e
−n

/
Φ←k (x

−1)
dx ≈ Γ(βk + 1)/Φk (n). (12)

For the second step, we have M (n) ≈ E[M (n)] = m(n) with a high probability as n → ∞ by a

concentration inequality. The monotonicity and continuity ofm(n) implyM← (x ) ≈m← (x ) with a

high probability under certain conditions. Applying (10) and (12), we finish the proof

P[C0 > x |I0 = k] = P[σ > M← (x ) |I0 = k]

≈ P[σ > m← (x ) |I0 = k] ≈ Γ(βk + 1)/Φk (m
← (x )) .

This result also provides a numerical method to approximate the miss probabilities. It makes

the computation feasible for complex settings, e.g., when the data sizes are correlated with the

popularity distributions. In practice, once we have the information about the data sizes si and the

corresponding data popularities p◦i , e.g., from the trace, we can always explicitly expressm(x ),
since i only takes a finite number of values in this case. Then, we can evaluatem← (x ) numerically;

see Section 5. Explicit expressions form← (x ) are derived for some cases in Section 3.1. Note that

m← (x ) is tightly related to the characteristic time approximation [28, 38]; see Section 3.3.

3 MULTIPLE COMPETING FLOWS
In this section, we rigorously characterize the miss probability of a given request flow, say flow k ,
when it is mixed with other competing flows that share the same cache in Section 3.1. In Section 3.2,

we provide a method to calculatem(x ) for multiple flows based on a decomposition property.

3.1 Asymptotic miss ratios
The miss probability of flow k , for a cache size x , is represented by a conditional probability

P[C0 > x |I0 = k]. Recall s̄ = supi si < ∞ and that p◦i = P[R0 = di ] is defined for the mixed

flow. Notem(z) → ∞ as z → ∞. By the theory of regularly varying functions [20], a function

l (x ) : R+ → R+ is slowly varying if for any λ > 0, l (λx )/l (x ) → 1 as x → ∞; and Φ(x ) = x β l (x ) is
called regularly varying of index β .

Assume that, for a function 0 < δ (x ) ≤ 1 and ϵ > 0,

lim

x→∞

m← ((1 + ϵδ (x )) x )

m← (x )
= f (ϵ ) with lim

ϵ→0

f (ϵ ) = 1. (13)

The function δ (x ) characterizes how fastm← (z) grows, and thus δ (x ) should be selected to be as

large as possible while still satisfying (13). For example, whenm← (x ) is regularly varying, e.g.,

m← (x ) = x β , we can let δ (x ) = 1, implying f (ϵ ) = (1 + ϵ )β ,д(ϵ ) = 0. Whenm← (x ) = ex
ξ
, 0 <

ξ < 1, we can pick δ (x ) = x−ξ , implying f (ϵ ) = limx→∞ e (x+ϵx
1−ξ )

ξ
/ex

ξ
= eϵξ . Both satisfy
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limϵ→0 f (ϵ ) = 1. Note that in these examples δ (x ) satisfies the following condition: there exist

h2 > h1 > 0,h4 > h3 > 0 and x0, for x > x0,

h1 <
δ (x )

δ (x + ϵδ (x ))
< h2,h3 <

δ (x − ϵδ (x ))

δ (x )
< h4. (14)

Theorem 3.1. ConsiderM flows sharing a cache. Under assupmtions (5), (13) and (14), for Φk (x ) ∼

x βk lk (x ), 1 ≤ k ≤ M and limx→∞ log (m← (x )) /(δ 2 (x )x ) = 0, we have, for βk ≥ 0 (when βk = 0,
lk (x ) is eventually non-decreasing), as x → ∞,

P[C0 > x |I0 = k] ∼
Γ(βk + 1)

Φk (m← (x ))
. (15)

Theorem 3.1 is the rigorous version of the result described in (7). The proof is presented in

Section 7.2. This theorem assumes an independent reference model, but the result can be generalized

to dependent requests [72]; see also [59, 70, 81]. Based on Theorem 3.1, we can easily derive

some corollaries. We begin with the special case when there is only a single flow k in service

and all data items are of the same size si ≡ 1. For a single flow k , we simplify the notation by

P [R0 > x |I0 = k] = P [R0 > x] and P [C0 > x |I0 = k] = P [C0 > x]. Theorem 3.1 recovers the results

in [56, 59] for Zipf’s law

p (k )i = q
(k )
i ∼ c/iα ,α > 1. (16)

Our result enhances (16) in three aspects. First, we study multiple flows (p (k )i , q
(k )
i ) that can have

overlapped data items. The requested data items can also have different sizes. Second, we address

the case α = 1 (then c needs to be replaced by l (i ) as in (17)), and the results in [56, 59] assume

α > 1. For α < 1, we need to assume that only a finite number of data items are considered in

the popularity distribution; otherwise the distribution does not exist. Due to this difference, the

asymptotic result in (15) is accurate only for large x when α ≥ 1. However, the insights obtained in

this paper can be extended to the case 0 < α < 1 using the analytical results developed in [72];

see also [19, 57]. Third, our result can derive the asymptotic miss probability for a large class of

popularity distributions, e.g., Weibull with varying data item sizes. Corollary 3.2 extends the results

of Theorem 3 in [56] under the condition (16) to regularly varying probabilities

p (k )i ∼ l (i )/iα ,α ≥ 1, (17)

with l (·) being a slowly varying function, e.g., l (x ) = logx .

Corollary 3.2. Consider a single flow with si ≡ 1 and p (1)i ∼ l (i )/iα , α > 1. Let l1 (x ) = l (x )−1/α

and ln+1 = l1 (x/ln (x )), n ≥ 1. If ln0
(x ) ∼ ln0+1 (x ) as x → ∞ for some n0, then

lim

x→∞

P[C0 > x]

P[R0 > x]

= (1 − 1/α ) (Γ(1 − 1/α ))α . (18)

Proof. First we provide a proof for the special case l (x ) = c , which was proved in Theorem 3

of [56]. The proof for a general l (x ) is presented in Section 7.3.

Note that p (k )x ∼ c/xα and

P [R0 > x] =
∑
i≥x

p (1)i ∼

∫ ∞

x

c

tα
dt =

c

(α − 1)xα−1
. (19)
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From (4), we obtian Φ1 (x ) ∼ (α − 1)c−1/αx1−1/α
. In addition, since

m(z) ∼
∑
i≥1

(
1 − exp

(
−
cz

iα

))
∼

∫ ∞

1

(
1 − exp

(
−
cz

tα

))
dt

∼ Γ(1 − 1/α )c1/αz1/α ,

we have the inversem← (z) ∼ zα / (cΓ(1 − 1/α )α ) . Picking δ (x ) = 1, it is easy to verify (14) and

limx→∞ logm← (x )/δ (x )2x = 0. Therefore, by Theorem 3.1, we obtain, as x → ∞,

P[C0 > x] ∼
Γ(2 − 1/α )Γ(1 − 1/α )α−1

α − 1

c

xα−1
. (20)

Combining (20) and (19) finishes the proof. □

Corollary 3.3. For a single flow with requests following a heavy-tailed Weibull distribution
p (k )i ∼ c exp

(
−iξ

)
, 0 < ξ < 1/3 and si ≡ 1, we have, for a Euler’s constant γ = 0.5772 · · · ,

lim

x→∞

P[C0 > x]

P[R0 > x]

= eγ . (21)

Proof. Since ce−x
ξ
is a decreasing function in x , we have∫ ∞

x
ce−y

ξ
dy ≤

∞∑
i=x

c exp

(
−iξ

)
≤

∫ ∞

x−1

ce−y
ξ
dy. (22)

Changing the variable z = yξ and using the property of incomplete gamma function, we obtain∫ ∞

x
ce−y

ξ
dy =

∫ ∞

x ξ

c

ξ
z1/ξ−1e−zdz ∼

c

ξ
x1−ξ e−x

ξ
, (23)

which implies, for 0 < ξ < 1,

Φk (x ) ∼ ξ (log(cx ))1−1/ξ x . (24)

Using Lemma 6 in [56], we obtain

m← (z) ∼ e−γ ez
ξ
/c . (25)

Picking δ (x ) = x−ξ > 0, for 0 < ξ < 1/3, it is easy to verify limx→∞ logm← (x )/x1−2ξ = 0 and (14).

Combining (24) and (25), by Theorem 3.1, we derive

P[C0 > x] ∼
eγ c

ξ
x1−ξ e−x

ξ
, (26)

which, using (22) and (23), proves (21). □

3.2 Decomposition property
For multiple request flows sharing a single cache space, instead of calculating p◦i , i ≥ 1 and

deriving m(x ) from (6), we prove a decomposition property that simplifies the computation of

m(x ). Let P =
(
p◦i , i ≥ 1

)
be constructed from a set of distributions Q (k ) =

(
q (k )i , i ≥ 1

)
according

to probabilities νk ,
∑

k νk = 1. Specifically, a random data item following the distribution P is

generated by sampling from the distribution Q (k )
with a probability νk . Since two flows k1,k2

have no overlapped data items, we have P
[
R0 = d

(k1 )
i

���I0 = k2

]
= 0. Therefore, according to (3),(

p◦i , i ≥ 1

)
can be represented by an unordered list,((

νkq
(k )
i ,k + i =m

)
,m = 2, 3, 4, · · ·

)
. (27)
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Let m̄(z) =
∑∞

i=0
si

(
1 − exp(−p◦i z)

)
. Lemma 3.4 shows a decomposition property for m(z) and

m̄(z) ∼ m(z) under certain conditions. Let m(k ) (z) =
∑∞

i=0
s (k )i

(
1 −

(
1 − q (k )i

)z )
and m̄(k ) (z) =∑∞

i=0
s (k )i

(
1 − exp

(
−q (k )i z

))
. It is often easier to compute m̄(k ) (z) thanm(k ) (z).

Lemma 3.4. Without overlapped data items, if, for either д(x ) = m(k ) (x ) or д(x ) = m̄(k ) (x ), we
have limx→∞ д((1 + δ )x )/д(x ) = f (k ) (δ ), 0 < δ < 1 with limδ→0 f

(k ) (δ ) = 1, then, as z → ∞,

m(k ) (z) ∼ m̄(k ) (z), (28)

and

m̄(z) ∼
∑
k

m̄(k ) (νkz) ∼
∑
j

m(k ) (νkz) ∼m(z). (29)

The proof of Lemma 3.4 is presented in Section 7. It can be used to computem(x ) for multiple

flows sharing the same cache. Applying Lemma 3.4 and Theorem 3.1, we derive the miss probability

for each flow in the following corollary.

Corollary 3.5. Consider M flows without overlapped data, satisfying P[R0 = d (k )
x |I0 = k] ∼

ck/x
αk , 1 ≤ k ≤ M and P[I0 = k] = νk ,

∑M
k=1

νk = 1. Assume that the data items of flow k have
identical sizes, i.e. s (k )i = s (k ), i ≥ 1. For α̃1 ≜ min1≤k≤n αk and S1 = {k ∈ Z|αk = α̃1, 1 ≤ k ≤ M },
we have, for k ∈ S1,

P[C0 > x |I0 = k] ∼
Γ(2 − 1/α̃1)

α̃1 − 1

γ1

α̃1−1

(νkck )
1− 1

α̃
1

ck

x α̃1−1

,

and for k ∈ S1

c ,

P[C0 > x |I0 = k] ∼
Γ (2 − 1/αk )

αk − 1

γ1

α̃1−
α̃

1

αk

(νkck )
1− 1

αk

ck

x
α̃1−

α̃
1

αk

,

where

γ1 = Γ(1 − 1/α̃1)
∑
k ∈S1

s (k ) (ckνk )
1/α̃1 . (30)

Proof. For flow k , 1 ≤ k ≤ n, we have

Φk (x ) ∼ (αk − 1)c−1/αk
k (νkx )

1−1/αk ,

m(k ) (z) ∼ s (k )Γ(1 − 1/αk ) (ckz)
1/αk .

Using the decomposition property of Lemma 3.4,m(z) is asymptotically determined by flows with

indices in S1,

m(z) ∼
M∑
k=1

m(k ) (z) ∼
M∑
k=1

s (k )Γ(1 − 1/αk ) (ckνkz)
1/αk

∼
∑
k ∈S1

s (k ) (ckνk )
1/α̃1Γ(1 − 1/α̃1)z

1/α̃1 ∼ γ1z
1/α̃1 ,

implying

m← (z) ∼ zα̃1/γ α̃1

1
. (31)

Now, by Theorem 3.1, we can prove the corollary after straightforward computations. □
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Corollary 3.5 approximates the miss probabilities for multiple flows with different αk when the

cache size x → ∞. When the cache size is small, this approximation is not accurate. One primary

reason is that the flows in S1

c
are not negligible when computingm(z) for a small z. In order to

improve the accuracy, we consider a larger set of dominating flows. Let α̃2 ≜ mink ∈S1

c αk denote

the second smallest value among all αk ’s when S
c
1
is not empty. For S2 = {k ∈ Z|αk = α̃2, 1 ≤ k ≤ n},

we consider all flows in the set S1 ∪ S2, and derive

m(z) ∼
∑
k ∈S1

s (k ) (ckνk )
1/α̃1Γ(1 − 1/α̃1)z

1/α̃1 +
∑
k ∈S2

s (k ) (ckνk )
1/α̃2Γ(1 − 1/α̃2)z

1/α̃2 .

The inverse function ofm(z) can be better approximated by

m← (z) ∼ zα̃1

/ (
γ1 + γ2 (z/γ1)

α̃1/α̃2−1

) α̃1

, (32)

where γ2 = Γ(1 − 1/α̃2)
∑

k ∈S2
s (k ) (ckνk )

1/α̃2
and γ1 is defined in (30). We obtain more accurate

numerical results for miss probabilities using (32) instead of (31) especially when the cache size

is small, though the expressions in (31) and (32) are asymptotically equivalent. Experiments 2 in

Section 5 validates this approximation. Alternatively, we also resort to numerical methods (e.g.,

binary search) to directly evaluatem← (z) fromm(z) for more complex cases.

3.3 Connection to the characteristic time approximation
The miss probability of LRU algorithm has been extensively studied using the characteristic time

approximation [28, 38]. Now we show that the characteristic time approximation is asymptotically

accurate under certain conditions. A similar result has been proved for a fluid limit and for Zipf’s

law with α > 1 in [56] and a mathematical explanation has been provided in [46]; also see a validity

argument in [82]. For multiple flows, the overall miss probability computed by the characteristic

time approximation is

PCT [C0 > x |I0 = k] =

∞∑
i=1

q (k )i e−p
(k )
i T , (33)

where T is the unique solution to

∑∞
i=1

si (1 − e
−p◦i T ) = x . Notably, applying Lemma 3.4, we have

T ∼m← (x ), as x → ∞.

Theorem 3.6. Under the conditions of Theorem 3.1, we have, as x → ∞,

PCT [C0 > x |I0 = k] ∼ P[C0 > x |I0 = k] ∼
Γ(1 + βk )

Φk (m← (x ))
. (34)

The proof of Theorem 3.6 is presented in Section 7.4.

Theorem 3.6 shows that the miss ratios in (33) and Theorem 3.1 are asymptotically equal. Note

that the characteristic time approximation does not fully exploit tail properties of popularity

distributions. By introducing a functional relationship Φk (·), Theorem 3.1 explicitly characterizes

the asymptotic miss ratios based on the popularity distributions of multiple competing flows. This

explicit form reduces the computation cost incurred by the long summation in (33).

4 POOLING AND SEPARATION
We first characterize the self-organizing behavior of LRU caching for multiple flows in Section 4.1.

Then, we study how the interactions of competing flows impact the individual ones in Section 4.2.

The consequences of overlapped data items across different flows are investigated in Section 4.3.

Based on the insights, we discuss engineering implications in Section 4.4.
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A pooling scheme serves theM request flows jointly using the cache space of size x . A separation

scheme divides the cache space x intoM parts according to fractions {uk }1≤k≤M ,

∑M
k=1

uk = 1, and

allocates ukx to flow k .

4.1 Self-organizing behavior of pooling
Based on the asymptotic miss ratios derived in Theorem 3.1, we show that, when multiple flows

have similar distributions and identical data item sizes, resource pooling asymptotically gives the

best overall hit ratio achieved by the optimal separation scheme. Otherwise, the optimal separation

scheme results in a better overall miss ratio. Note that the optimal separation scheme is static while

the pooling scheme is adaptive without any parameter tuning or optimization. This explains why

pooling is better in Fig. 3. Let P∗s [C0 > x] and Pp[C0 > x] denote the overall miss probabilities

under the optimal separation {u∗k } and under resource pooling, respectively.

Theorem 4.1. For M flows without overlapped data, following P
[
R0 = d

(k )
x

���I0 = k
]
∼ ck/x

αk ,

αk > 1, 1 ≤ k ≤ M and the data items of flow k having the same size s (k )i = s (k ) , we have

lim

x→∞
Pp[C0 > x]/P∗s [C0 > x] ≥ 1, (35)

and the equality holds if and only if s (1) = s (2) = · · · = s (M ) .

This result explains the simulation in Fig.4 when data item sizes are different. In practice, data

item sizes vary, and they can be considered approximately equal if within the same range, as used by

slabs of Memcached [9, 69]. Note that Theorem 4.1 only characterizes an asymptotic result. When

the cache size is not large enough and αk ’s are different, resource pooling can be worse than the

optimal separation, as studied in [29]. As commented after Corollary 3.5, a better approximation for

small cache sizes is to use Theorem 3.1 by numerically evaluatingm← (x ). Theorem 4.1 also shows

that when data item sizes vary significantly, resource pooling could be worse than separation, as

illustrated in Fig. 4.

Proof. First, we assume αk = α , 1 ≤ k ≤ M . To characterize resource separation, by Theorem 3.1,

we obtain

Ps [C0 > x] =

M∑
k=1

P[I0 = k]Ps [C0 > ukx |I0 = k] ∼

M∑
k=1

νkck
Γ(1 − 1/α )α

α

(
s (k )

ukx

)α−1

. (36)

Since the optimal separation method u∗ = (u∗
1
,u∗

2
, · · · ,u∗k ) minimizes the overall asymptotic miss

probability, we have

minimize

M∑
k=1

νkck
Γ(1 − 1/α )α

α

(
s (k )

ukx

)α−1

subject to

M∑
k=1

uk = 1,uk ≥ 0.

The solution of this convex optimization problem satisfies the KKT conditions, and therefore, for

∀i, j with 1 ≤ i, j ≤ M ,

ciνi (s
(i ) )

α−1

/u∗i
α
= c jνj (s

(j ) )
α−1

/u∗j
α ,

resulting in

u∗k =
(ckνk )

1/α (s (k ) )
1−1/α∑M

i=1
(ciνi )

1/α (s (i ) )
1−1/α , k = 1, 2, · · · ,M . (37)
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From (36) and (37), we obtain

P∗s [C0 > x] ∼
Γ(1 − 1/α )α

αxα−1

*
,

M∑
k=1

(ckνk )
1/α (s (k ) )

1−1/α +
-

α

. (38)

To study resource pooling, we obtain, by Corollary 3.5,

Pp[C0 > x] =

M∑
k=1

P[I0 = k]Pp[C0 > x |I0 = k]

∼

M∑
k=1

νk
Γ(1 − 1/α )α

α

(∑M
i=1

(ciνi )
1/αs (i )

)α−1

νk 1−1/α

ck
1/α

xα−1

=
Γ(1 − 1/α )α

αxα−1

*
,

M∑
k=1

(ckνk )
1/α +

-
*
,

M∑
i=1

(ciνi )
1/αs (i )+

-

α−1

,

which, using (38) and Hölder’s inequality, proves (35). The equality holds if and only if s (1) = s (2) =
· · · = s (n) .
Now, if αk ’s are not identical, let α̃1 = min1≤k≤n αk and S1 = {k ∈ Z|αk = α̃1, 1 ≤ k ≤ n}. By

Corollary 3.5, we have, for resource pooling,

Pp[C0 > x] =

M∑
k=1

P[I0 = k]Pp[C0 > x |I0 = k] ∼
∑
k ∈S1

P[I0 = k]Pp[C0 > x |I0 = k].

For separation, by (18), we have, as x → ∞,

Ps [C0 > ukx |I0 = k] ∼ ck
Γ(1 − 1/αk )

αk

αk

(
s (k )

ukx

)αk−1

.

Thus, the overall miss probability is

Ps [C0 > x] =

M∑
k=1

P[I0 = k]Ps [C0 > ukx |I0 = k] ∼
∑
k ∈S )1

P[I0 = k]Ps [C0 > ukx |I0 = k]

∼
∑
k ∈S1

νkck
Γ(1 − 1/αk )

αk

αk

(
s (k )

ukx

)αk−1

.

Thus, the same arguments for the case αk = α can be repeated to prove (35) in this case. □

4.2 Impacts on individual flows
When the QoS (quality-of-service) of individual flows is important, we need to guarantee the miss

ratio of each flow. The following theorem shows that, for each flow, cache pooling asymptotically

achieves the same miss ratio as the optimal separation under certain conditions. Interestingly, the

miss ratios of multiple competing flows decrease according to c1/α
k ν1/α−1

k , 1 ≤ k ≤ M when sharing

the same cache.

Corollary 4.2. ForM flows under the conditions of Theorem 4.1 with s (1) = s (2) = · · · = s (M ) and
αk = α , we have

lim

x→∞
Pp[C0 > x |I0 = k]/P∗s [C0 > u∗kx |I0 = k] = 1.
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Furthermore, the miss ratios of any two flows i, j satisfy

lim

x→∞

Pp[C0 > x |I0 = i]

Pp[C0 > x |I0 = j]
= lim

x→∞

P∗s [C0 > u∗i x |I0 = i]

P∗s [C0 > u∗j x |I0 = j]
=
c1/α
i ν1/α−1

i

c1/α
j ν1/α−1

j

.

The proof of this corollary is based on the same arguments in the proof of Theorem 4.1. This result

quantifies the empirical observation [9] that mixing multiple flows benefits the ones with large

arrival rates at the expense of the others with small arrival rates. It also shows that the popularity

distributions need to be considered if ci , c j . Therefore, if arrival rates differ significantly, mixing

flows requires extra caution. Simulations for validating Corollary 4.2 is in Section 5.

4.3 Overlapped data items
In this section, we show that when overlapped data items exceed certain levels, resource pooling

can even improve the performance of every flow. Since overlapped data items across more than

two flows are complicated, we only consider two flows with unit-sized data items. Notably, there

always exists a good region of parameters such that the miss probabilities of both flows under

pooling are better than under separation; see Experiment 3 in Section 5.

Since the requested data items can overlap (see Fig. 5), we introduce 3 disjoint classes of data items,

A,B and D for the two flows. Flow 1 and 2 request data items from classA = {d (A)
i , i = 1, 2, · · · } and

class B = {d (B )
i , i = 1, 2, · · · }, respectively. Class D = {d (D )

i , i = 1, 2, · · · } represents the common

data items that are requested by both flow 1 and 2. We use Jn = A, Jn = B, Jn = D to indicate that the

requestn is for classA,B andD, respectively. Let P [Jn = A | In = 1] = p (1)A , P [Jn = D | In = 1] = p (1)D

with p (1)A + p
(1)
D = 1, and P [Jn = B | In = 2] = p (2)B , P [Jn = D | In = 2] = p (2)D with p (2)B + p

(2)
D = 1.

Class A and B have P
[
R0 = d

(A)
x |I0 = 1, J0 = A

]
∼ cA/x

α
, P [R0 = d (B )

x |I0 = 2, J0 = B
]
∼ cB/x

α
. For

class D, we assume that P
[
R0 = d

(D )
x |I0 = k, J0 = D

]
∼ cD/x

α ,k = 1, 2.

An optimal separation scheme has been proposed in [34] to serve classes A,B,D in three iso-

lated parts of the whole cache space. Since the three classes do not have overlapped data items,

Theorem 4.1 implies that the optimal separation is asymptotically equivalent to pooling. However,

this isolation scheme requires a lot of tracking information, and is difficult to implement in practice.

We consider a practical constraint that a flow is the smallest unit that cannot be further divided

into sub-flows. In this case, the optimal separation is not always the best. In fact, it can be worse

than resource pooling if enough data overlap is present.

For a static separation u = (u1,u2), define a good region Gu for positive parameters P =(
ν1,ν2, cA, cB ,p

(1)
A ,p

(2)
B ,p

(1)
D , p

(2)
D

)
, which satisfy, for p∗D = p

(1)
D ν1 + p

(2)
D ν2 > 0,((

cAp
(1)
A

)
1/α
+

(
cDp

(1)
D

)
1/α )α

((
cAp

(1)
A ν1

)
1/α
+

(
cBp

(2)
B ν2

)
1/α
+

(
cDp

∗
D

)
1/α

)α−1
> u1

α−1
*..
,

(
cAp

(1)
A

)
1/α

ν1

1−1/α +
cD

1/αp (1)D

p∗D
1−1/α

+//
-
, (39)

with another symmetric constraint that replaces u1, cA, cB , p
(1)
A , p (2)B , p (1)D in (39) with u2, cB , cA, p

(2)
B ,

p (1)A , p (2)D , respectively. The following corollary shows that when the parameters satisfy P ∈ Gu , both
flows have smaller miss ratios by resource pooling than by the static separation u. Remarkably, the

parameters in P for the optimal static separation u∗ that minimizes the overall miss ratio (defined

in Section 4.1) are always in the good region Gu∗ , although this region is defined to study the miss

ratios of individual flows.
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Corollary 4.3. For any positive u = (u1,u2), if P ∈ Gu and is strictly positive, then we have, for
k = 1, 2,

lim

x→∞
Pp[C0 > x |I0 = k]/Ps [C0 > ukx |I0 = k] < 1.

Furthermore, if u = u∗, then we always have P ∈ Gu∗ .

The proof is a straightforward computation based on Theorem 3.1. This corollary also implies

that Gu is always nonempty. We use simulations to validate Corollary 4.3 in Section 5.

4.4 Engineering Implications
Whether resource pooling or separation should be used for LRU caching is complicated and has no

straight yes or no answers, depending on four critical factors: the popularity distributions, request

rates, data item sizes and overlapped data across different flows. This problem becomes even more

complicated due to engineering issues. However, there are still guidelines to improve the hit ratios.

Our analysis shows that for large cache spaces it is beneficial to jointly serve multiple flows if

their data item sizes and popularity distributions are similar and their arrival rates do not differ

significantly. Although the optimal static resource separation scheme has been shown to always

theoretically achieve the best performance under certain assumptions [34], in practice the number

of separate clusters deployed in service, e.g., Memcached clusters, is relatively small [9]. This may

be partially attributed to the self-organizing behavior of LRU for resource pooling. As shown in

Theorem 4.1, resource pooling can adaptively achieve the optimal resource allocation for multiple

competing flows asymptotically when the data item sizes are equal. In practice two data items

can be considered to have an approximately equal size if within the same range. This property is

especially beneficial when the request statistics, including the distributions and rates, are time-

varying. Nevertheless, we also point that, due to the impact of competing flows, careful separation

could be necessary if we want to guarantee the miss ratios of individual flows for certain QoS

requirements.

The current practice uses applications and domains to separate flows of requests into different

cache spaces [9, 69]. One possible explanation is that the data item sizes, e.g., text and image

objects, and request rates are quite different. This also suggests that there is still room for possible

improvement. Amore careful strategy based on the quantitative characterizationmay lead to optimal

or near-optimal performance. For example, our analysis shows that distributions are important in

determining the miss ratios. Thus, it appears to be beneficial if the statistics of different flows can

be further exploited in practice.

5 EXPERIMENTS
We implement an LRU simulator using C++ and conduct extensive simulation experiments. First,

we verify Theorem 3.1 for data items of varying sizes with distributions beyond Zipf’s distributions.

Next, we study the interactions among multiple competing flows on the same cache space. Last, we

investigate the impact of overlapped data items across flows by verifying Corollaries 4.2 and 4.3.

The numerical results based on analyses match accurately with the simulation experiments, even

for small cache sizes and finitely many data items.

Experiment 1. Consider 3 flows of data item requests that share a single cache space. The

varying data item sizes take different values that are also correlated with the popularity distri-

butions. Set q (k )
1
= 0.1, and q (k )i = ck log i/iαk for 2 ≤ i ≤ N = 10

5
, 1 ≤ k ≤ 3, which are

beyond Zipf’s distributions. Set [α1,α2,α3] = [2.0, 2.2, 2.4], [ν1,ν2,ν3] = [0.2, 0.3, 0.5]. Then,

c1 = (1 − q (1)
1
)/(

∑N
i=2

(log i )i−α1 ) = 0.9601, c2 = (1 − q (2)
1
)/(

∑N
i=2

(log i )i−α2 ) = 1.4193, c3 =
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(1 − q (3)
1
)/(

∑N
i=2

(log i )i−α3 ) = 1.9910. Let d (k )
i denote the i ′th data item of flow k with size s (k )i ,

1 ≤ k ≤ 3, 1 ≤ i ≤ 10
5
. Based on the empirical distribution [9], the data sizes for each flow are

independently drawn from a generalized Pareto distribution with parameters ξ = 0.1, µ = 1,σ = 50.

To be correlated with the popularity distribution q (k )i , these data sizes are sorted in a way that s (k )i ,

1 ≤ k ≤ 3 are non-decreasing with respect to i . Note that q (k )i , 1 ≤ k ≤ 3 are decreasing with respect

to i . Theoretical miss probabilities are approximated by Theorem 3.1, wherem← (x ) is evaluated by

a binary search based on (6). The empirical miss probabilities and their theoretical approximations

are plotted in Fig. 6. The good match validates Theorem 3.1 even when the popularities are beyond

Zipf’s distributions (≈ log i/iαk ) and also correlated with the data sizes.

Fig. 6. Flows beyond Zipf’s distributions with varying data sizes

Experiment 2. This experiment compares the miss ratios when a flow is served exclusively

in a dedicated cache and when it shares the same cache with other flows. We show how one

flow is impacted by other competing flows, through validating Corollary 3.5. Consider 10 flows

without overlapped data items. Let νk = 0.1 and d (k )
i , i = 1, 2, 3, · · · be the data items of flow k for

1 ≤ k ≤ 10. Data popularities of each flow are assumed to follow a Zipf’s law, i.e. P[R0 = d
(k )
i |I0 =

k] ∼ ck/i
αk , 1 ≤ k ≤ 10. Let Nk be the number of data items of flow k . Set αi = 2.5, 1 ≤ i ≤ 5,

α j = 1.5, 6 ≤ j ≤ 10, and Nk = 10
6, 1 ≤ k ≤ 10, and therefore, ci = (

∑N1

x=1
x−α1 )−1 = 0.7454,

c j = (
∑N6

x=1
x−α6 )−1 = 0.3831. Note that we use the enhanced approximation (32), instead of (31), to

computem← (x ) when the cache size x is relatively small. The theoretical and empirical results for

Fig. 7. Impacts among 10 flows

the miss probabilities are plotted in Fig. 7 when changing the cache capacity from 200 to 2000. Since

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 5. Publication date: March 2018.



On Resource Pooling and Separation for LRU Caching 5:19

flows 1 − 5 (respectively flows 6 − 10) have the same popularity distribution and the same miss

ratio, we only plot flow 1 (respectively flow 6). It can be observed that the empirical results match

with the numerical results even when the cache size is relatively small. In this case, flow 1 has a

miss probability tail that decays on the order of 1/x0.9
, as shown by the curve with a label flow 1

(pooling, empirical). However, if flow 1 is served without others, as shown by the curve with a label

flow 1 (separation, empirical), its probability tail only decays on the order of 1/x1.5
. Therefore, in

this case it is much worse for flow 1 (respectively flows 2− 5) to share with others than to be served

exclusively. On the other hand, flow 6 (respectively flows 7− 10) is not significantly impacted when

served together with other flows, since α6 < αi , 1 ≤ i ≤ 5.

Experiment 3. To address overlapped common data items, we simulate 2 flows with 3 classes of

data A,B,D defined in Section 4.3, and use the same notation introduced therein. Let NA,NB ,ND
be the numbers of data items of class A,B and D, respectively. Set cache size x = 1000, NA =

NB = ND = 10
6
, αA = αB = αD = 1.7, cA = cB = cD =

(∑NA
i=1

i−αA
)−1

= 0.4868. First, we

(a) Without overlapped data (Corollary 4.2)

(b) With overlapped data (Corollary 4.3)

Fig. 8. Two flows sharing a server

assume these two flows have no overlapped data (i.e., p (1)D = p (2)D = 0). In Fig. 8(a), we plot

ρ (ν1) ≜ P∗s [C0 > u1x |I0 = 1]/P∗s [C0 > u2x |I0 = 2] and the miss ratios for both flows under

resource pooling and the optimal separation to validate Corollary 4.2. The simulations match with

the theoretical results. Then, we assume these two flows have 20% overlapped data items (i.e.,

p (1)D = p (2)D = 0.2). In Fig. 8(b), we plot the miss ratios under resource pooling and under a static

separation (u1,u2) = (0.55, 0.45). It can be observed that in the shaded area ν1 ∈ (0.40, 0.75), which
is exactly the good region calculated by Corollary 4.3, both flows have lower miss ratios under

resource pooling than under the static separation. This result validates Corollary 4.3. In presence
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of overlapped data, there exists a good region where both flows have better hit ratios by pooling.

However, when the arrival rates of these two flows are very different, i.e., ν1 < 0.4 or ν1 > 0.75, the

flow with a lower arrival rate will be negatively impacted.

6 CONCLUSION
When designing a caching system shared by multiple request flows, should we use resource pooling

or separation for better hit ratios? This paper develops a theoretical framework to answer this

fundamental question. Roughly speaking, for flows with similar request distributions and data

item sizes, with close arrival rates, and/or with enough overlapped data items, it is beneficial to

jointly serve them by combining their allocated cache spaces together. However, for flows with

disparate request distributions, i.e., probability tails decaying at different rates, or with clearly

different arrival rates, isolating the cache spaces provides a guarantee for the hit ratios of individual

flows. Otherwise, some of the flows could be negatively impacted, even severely penalized. Our

results provide useful insights that can be exploited to potentially further improve the hit ratios of

caching systems.

7 PROOFS
This section contains the details of the proofs.

7.1 Proof of Lemma 3.4
Without loss of generality, we assume that

(
q (k )i

)
is a non-increasing sequence in i for each fixed k .

We begin with д(x ) = m̄(x ). First, using the inequality
(
1 − q (k )i

)z
≤ exp(−q (k )i z), we obtain

m(k ) (z) ≥
∞∑
i=0

s (k )i

(
1 − exp

(
−q (k )i z

))
= m̄(k ) (z). (40)

Next, for any 0 < δ < 1, there exists xδ > 0 such that 1 − x ≥ e−(1+δ )x , 0 ≤ x ≤ xδ . Thus, selecting

iδ with q (k )iδ
< xδ , we have

m(k ) (z) ≤ *.
,

iδ∑
i=0

+
∑
i>iδ

+/
-
s (k )i

(
1 −

(
1 − q (k )i

)z )
≤ iδ s̄ +

∑
i>iδ

s (k )i

(
1 − exp

(
−(1 + δ )q (k )i z

))
≤ iδ s̄ + m̄

(k ) ((1 + δ )z), (41)

where the second last inequality uses s (k )i ≤ s̄ . Using (40), (41) and limx→∞m
(k ) ((1 + δ )x )/m(k ) (x )

→ 1 as δ → 0, we prove (28).

Based on the representation of

(
p◦i , i ≥ 1

)
in (27), we have

m(z) =
∞∑
k=1

∞∑
i=1

s (k )i

(
1 −

(
1 − νkq

(k )
i

)z )
. (42)

Using the same arguments as in (40) and (41), we can prove

m̄(k ) (νkz) ∼
∞∑
i=1

s (k )i

(
1 −

(
1 − νkq

(k )
i

)z )
. (43)

Using (42), (43) and applying (28), we finish the proof of (29) when д(x ) = m̄(x ). Slightly modifying

the preceding arguments can prove (29) when д(x ) =m(x ).
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7.2 Proof of Theorem 3.1
In order to prove Theorem 3.1, we need to establish a lemma.

Lemma 7.1. For ϵ (x ) = ϵδ (x ) as in (13) and s̄ = supi si < ∞, we obtain

P
[
M (m← (x )) ≥ (1 + ϵ (x ))x

]
≤ e−(ϵ (x ))

2x/4s̄ . (44)

Proof. Define a Bernoulli random variable Xi , and let Xi = 1 to indicate that item di has been
requested in R−1,R−2, · · · ,R−n and Xi = 0 otherwise. By Markov’s inequality, for θ > 0, we obtain,

using P[Xi = 1] = pi (n), E[eθ siXi
] = pi (n)e

θ si + 1 − pi (n) = pi (n)
(
eθ si − 1

)
+ 1 ≤ epi (n)(e

θ si −1)

and independence of Xi ’s,

P [M (n) ≥ (1 + ϵ (m(n)))m(n)] ≤ E
[
eθ

∑∞
i=1

siXi
]
/e (1+ϵ (m (n)))θm (n)

≤ exp
*
,

∞∑
i=1

pi (n)
(
eθ si − 1

)
− θ (1 + ϵ (m(n)))

∞∑
i=1

pi (n)si+
-
.

Using ex − 1 ≤ (1 + ξ )x , 0 < x < 2ξ/eξ , ξ > 0, for θ = ϵ (m(n))/(2s̄ ), we obtain, eθsi − 1 ≤

(1 + ϵ (m(n))/2)θsi . Therefore,

P [M (n) ≥ (1 + ϵ (m(n)))m(n)] ≤ exp
*
,
−

∞∑
i=1

(ϵ (m(n))2

4s̄
pi (n)si+

-
,

which, by

∑∞
i=1

pi (n)si =m(n), yields

P [M (n) ≥ (1 + ϵ (m(n)))m(n)] ≤ e−(ϵ (m (n)))2m (n)/4s̄ ,

implying (44) by replacing x =m(n). Using the same approach, we can prove

P
[
M (m← (x )) ≤ (1 − ϵ (x ))x

]
≤ e−(ϵ (x ))

2x/4s̄ . (45)

□

Next we prove Theorem 3.1.

Proof. In the intuitive proof of Section 2, we have derived

P[C0 > x |I0 = k] = P[σ > M← (x ) |I0 = k]. (46)

The whole proof consists of two steps. The first step is to show

P[σ > n |I0 = k] ∼ Γ(βk + 1)/Φk (n), (47)

for βk > 0 and βk = 0, respectively. The second step is to relateM← (x ) tom← (x ) as x → ∞.
Step 1. First, we consider βk > 0. Assume that Φk (x ) is eventually absolutely continuous and

strictly monotone, since, by Proposition 1.5.8 of [20], we can construct such a function

Φ∗k (x ) = βk

∫ x

x0

Φk (s )s
−1ds, x ≥ x0, (48)

which, for x0 large enough, satisfies, as y → ∞,

*.
,

∞∑
i=y

q (k )i
+/
-

−1

∼ Φk

((
p (k )y

)−1

)
∼ Φ∗k

((
p (k )y

)−1

)
.
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Therefore, there exists x0 such that for all x > x0, Φk (x ) has an inverse function Φ←k (x ). The
condition (4) implies that, for 0 < ϵ1 < 1, there exists iϵ1

, such that for i > iϵ1
,

(1 − ϵ1)
*.
,

∞∑
j=i

q (k )j
+/
-

−1

≤ Φk

((
p (k )i

)−1

)
≤ (1 + ϵ1)

*.
,

∞∑
j=i

q (k )j
+/
-

−1

, (49)

and thus, by choosing iϵ1
such that 1/p (k )iϵ

1

> x0, we obtain

Φ←k
*.
,
(1 − ϵ1)

*.
,

∞∑
j=i

q (k )j
+/
-

−1

+/
-
≤

(
p (k )i

)−1

≤ Φ←k
*.
,
(1 + ϵ1)

*.
,

∞∑
j=i

q (k )j
+/
-

−1

+/
-
. (50)

First, we will prove an upper bound for (47). Combining (8) and (50) yields, using (1−p)n ≤ e−np ,

P
[
σ > n |I0 = k

]
=
*.
,

iϵ
1∑

i=1

+

∞∑
i=iϵ

1
+1

+/
-
q (k )i

(
1 − p (k )i

)n
≤

(
1 − p (k )iϵ

1

)n
+

∞∑
i=iϵ

1
+1

q (k )i e−np
(k )
i ≜ I1 + I2. (51)

For 0 < ϵ2 ≤ p (k )iϵ
1

, integer n large enough, and any nonnegative integer l ≤ ⌊lognϵ2⌋, we can

find il such that p (k )il+1
≤ el/n ≤ p (k )il

≤ ϵ2. Choose an integerm with 0 < m < ⌊lognϵ2⌋. We have

i0 > im > i ⌊lognϵ2 ⌋ > iϵ1
, and

I2 =
*.
,

i ⌊lognϵ
2
⌋−1∑

i=iϵ
1
+1

+

im∑
i=i ⌊lognϵ

2
⌋

+

∞∑
i=im+1

+/
-
q (k )i e−np

(k )
i

≤ e−nϵ2 +

∞∑
l=m

e−e
l

il∑
j=il+1

+1

q (k )j +

∞∑
j=im+1

q (k )j e−np
(k )
j

≜ I21 + I22 + I23. (52)

We have I23 =
∑∞

j=im+1

(
Q j −Q j+1

)
e−n/Φ

←
k

(
(1+ϵ1 )Q−1

j

)
for Q j =

∑∞
i=j q

(k )
i . Since e−n/Φ

←
k ((1+ϵ1 )u−1) ≥

e−n/Φ
←
k

(
(1+ϵ1 )Q−1

j

)
for ∀u ∈ (Q j+1,Q j ), we have

I23 ≤

∫ Qim

0

e−n/Φ
←
k ((1+ϵ1 )u−1)du ≤

∫ ϵ1

0

d

(
1 + ϵ1

Φk (n/z)

)
+

∫ em

ϵ1

e−zd

(
1 + ϵ1

Φk (n/z)

)
.

By Theorem 1.2.1 of [20] and (48), we obtain,

I23Φk (n) ≲ (1 + ϵ1)ϵ
βk
1
+

∫ em

ϵ1

(1 + ϵ1)βke
−zzβk−1dz. (53)

For I22, using the same approach, we obtain

I22Φk (n) ≲
∞∑

k=m

(1 + ϵ1)e
−ek

(
ek+1

)βk
< ∞. (54)

Combining (53) and (54), and then passing ϵ1 → 0 andm → ∞, we obtain, using I1 = o(1/Φk (n)) in
(51),

P[σ > n |I0 = k]Φk (n) ≲
∫ ∞

0

βke
−zzβk−1dz = Γ(βk + 1). (55)
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Now, we prove the lower bound for (47). By condition (5) we can choose iϵ1
large enough such

that, for all i > iϵ1
,

q (k )i ≥ (1 − ϵ1)q
(k )
i−1
. (56)

Using (8), (50) and the monotonicity of Φ←k (·), we obtain

P
[
σ > n |I0 = k

]
≥

∞∑
i=iϵ

1
+1

q (k )i

(
1 − p (k )i

)n
≥ (1 − ϵ1)

∞∑
i=iϵ

1
+1

∆Qi
*.
,
1 −

1

Φ←k

(
(1 − ϵ1) (Qi )

−1

) +/
-

n

≥ (1 − ϵ1)

∫ Qiϵ
1

0

(
1 − 1/Φ←k

(
(1 − ϵ1)u

−1

))n
du . (57)

where ∆Qi = Qi−1 − Qi = q (k )i−1
. ForW > 0, choosing in > iϵ with Φ←k

(
(1 − ϵ1)Qin

)
= n/W and

letting z = n/Φ←k

(
(1 − ϵ1)u

−1

)
, we obtain,

P[σ > n |I0 = k]Φk (n) ≥ (1 − ϵ1)Φk (n)

∫ Qin

0

(
1 −

1

Φ←k ((1 − ϵ1)/u)

)n
du

≥ (1 − ϵ1)

∫ W

ϵ1

(
1 −

z

n

)n
d

(
1 − ϵ1

Φk (n/z)

)
. (58)

From (58), by using the same approach as in deriving (53), we obtain, as n → ∞,

P[σ > n |I0 = k]Φk (n) ≳ (1 − ϵ1)

∫ W

ϵ
(1 − ϵ1)βke

−zzβk−1dz,

which, passingW → ∞ and ϵ1 → 0, yields

P[σ > n |I0 = k]Φk (n) ≳
∫ ∞

0

βke
−zzβk−1dz = Γ(βk + 1). (59)

Combining (55) and (59) completes the proof of (47).

Up to now, we have proved (47) for βk > 0. Using a similar approach, we can prove (47) for

βk = 0. For βk = 0, we need to prove

P
[
σ > n |I0 = k

]
∼ 1/Φk (n). (60)

Recall that there exists x0 such that Φk (x ) is strictly increasing for x > x0. For any positive integer

n, we can find ϵ3 ∈ (0, 1) with n/ϵ3 > x0. Because of the monotonicity of p (k )i , there exists an index

iϵ3
such that p (k )iϵ

3

≥ ϵ3/n and p (k )i < ϵ3/n for all i > iϵ3
. By choosing ϵ3 sufficiently small such that

iϵ3
> iϵ1

, we can derive the lower bound for the miss probability

P
[
σ > n |I0 = k

]
=

∞∑
i=1

q (k )i

(
1 − p (k )i

)n
≥

(
1 −

ϵ3

n

)n ∞∑
i=iϵ

3
+1

q (k )i .
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Using (49) and (56), we obtain

P
[
σ > n |I0 = k

]
≥

(
1 −

ϵ3

n

)n
(1 − ϵ1)

∞∑
i=iϵ

3

q (k )i ≥

(
1 −

ϵ3

n

)n (1 − ϵ1)
2

Φk

((
p (k )iϵ

3

)−1

)
≥

(
1 −

ϵ3

n

)n (1 − ϵ1)
2

Φk
(
n
ϵ3

) ,
implying

P
[
σ > n |I0 = k

]
Φk (n) ≥

(
1 −

ϵ3

n

)n
(1 − ϵ1)

2
Φk (n)

Φk
(
n
ϵ3

) .
By passing n → ∞ and ϵ1, ϵ3 → 0, we obtain

lim

n→∞
P
[
σ > n |I0 = k

]
Φk (n) ≥ 1. (61)

Next, we prove the upper bound. The miss ratio can be bounded as

P
[
σ > n |I0 = k

]
=
*.
,

∞∑
i=iϵ

1
+1

+

iϵ
1∑

i=1

+/
-
q (k )i

(
1 − p (k )i

)n
≤

∞∑
i=iϵ

1
+1

q (k )i e−np
(k )
i +

(
1 − p (k )iϵ

1

)n
, (62)

where the second inequality uses the monotonicity of p (k )i and 1−x ≤ e−x . Using a similar approach

as in (52), we can upper bound (62) by

P
[
σ > n |I0 = k

]
≤
*.
,

i ⌊lognϵ
2
⌋−1∑

i=iϵ
1
+1

+

im∑
i=i ⌊lognϵ

2
⌋

+

∞∑
i=im+1

+/
-
q (k )i e−np

(k )
i +

(
1 − p (k )iϵ

1

)n

≤ e−nϵ2 +

∞∑
l=m

e−e
l

il∑
j=il+1

+1

q (k )j +

∞∑
i=im+1

q (k )i +

(
1 − p (k )iϵ

1

)n
≤ e−nϵ2 +

∞∑
l=m

e−e
l (1 + ϵ1)

Φk (n/el+1)
+

1 + ϵ1

Φk (n/em )
+

(
1 − p (k )iϵ

1

)n
,

which implies

P
[
σ > n |I0 = k

]
Φk (n) ≤

(1 + ϵ1)Φk (n)

Φk (n/em )
+

∞∑
l=m

e−e
l (1 + ϵ1)Φk (n)

Φk (n/el+1)
+ o(1). (63)

Passing ϵ1 → 0, n → ∞ and thenm → ∞ in (63) yields

lim

n→∞
P
[
σ > n |I0 = k

]
Φk (n) ≤ 1. (64)

Combining (61) and (64) finishes the proof of (60).

Up to now, we have proved (47) for βk > 0 and βk = 0. Next, we use the concentration bounds (44)

and (45) forM (x ) in Lemma 7.1 to characterizeM← (x ).
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Step 2. For x1 =m
← (x/(1 + ϵ (x ))), we obtain, by (44),

P[M← (x ) < x1] ≤ P
[
M (m← (x/(1 + ϵ (x )))) ≥ x

]
= P

[
M

(
m←

(
x

1 + ϵ (x )

))
≥

(
(1 + ϵ (x ))x

1 + ϵ (x )

)]
. (65)

Recallingh1 andh2 defined in (14) and notingδ (x ) ≤ 1, we have, forx > x0, ϵ (x ) ≥ h1ϵ (x/(1 + ϵ (x ))),
which, in conjunction with (65) and using (44), implies that P[M← (x ) < x1] is upper bounded by

P

[
M (x1) ≥

(
1 + h1ϵ

(
x

1 + ϵ (x )

)) (
x

1 + ϵ (x )

)]
≤ exp

(
−(h1ϵ (x/(1 + ϵ (x ))))

2x/ (4s̄ (1 + ϵ (x )))
)

≤ exp

(
−
h2

1

h2

2

ϵ (x )2x

4s̄ (1 + ϵ )

)
. (66)

Thus, by (46), (47), (44) and (66), we obtain

P[C0 > x] ≤ P[σ > M← (x ),M← (x ) ≥ x1] + P[M← (x ) < x1]

≤ P[σ > m← (x/(1 + ϵ (x )))] + P[M← (x ) < x1]

≲
Γ(βk + 1)

Φk (m← (x/(1 + ϵ (x ))))
+ exp

(
−
h2

1

h2

2

ϵ (x )2x

4s̄ (1 + ϵ )

)
.

Using limx→∞ log (m← (x )) /(δ 2 (x )x ) = 0 and (13), we obtain, recalling ϵ (x ) = ϵδ (x ) and passing
ϵ → 0,

P[C0 > x] ≤
Γ (1 + βk )

Φk (m← (x ))
+ o (1/Φk (m

← (x ))) . (67)

Let x2 =m
← (x/(1 − ϵ (x ))). We obtain

P[C0 > x] ≥ P[σ > M← (x ),M← (x ) ≤ x2] − P[M← (x ) > x2],

which, by similar arguments as in proving (67), yields

P[C0 > x] ≥
Γ (1 + βk )

Φk (m← (x ))
− o (1/Φk (m

← (x ))) . (68)

Combining (67) and (68) finishes the proof. □

7.3 Proof of Corollary 3.2

Consider p (k )x ∼ l (x )/xα with l (x ) being a slowly varying function. According to Proposition 1.5.10

of [20], we have

P [R0 > x] =
∑
i≥x

p (k )i ∼

∫ ∞

x

l (x )

xα
dx ∼

l (x )

(α − 1)xα−1
. (69)

Using Lemma 3.4, we obtain

m(z) ∼
∑
i≥1

(
1 − exp

(
−
l (i )z

iα

))
∼

∫ ∞

1

(
1 − exp

(
−
l (x )z

xα

))
dx .

Since l (x )x−α ∼ α
∫ ∞
x l (t )t−α−1dt (Proposition 1.5.10 of [20]), for any ϵ > 0, there exists xϵ > 0,

such that for all x > xϵ ,

(1 − ϵ )α

∫ ∞

x
l (t )t−α−1 < l (x )x−α < (1 + ϵ )α

∫ ∞

x
l (t )t−α−1dt . (70)
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Therefore,m(z) can be upper bounded by

m(z) ≲
∫ xϵ

1

(
1 − exp

(
−
l (x )z

xα

))
dx +

∫ ∞

xϵ

(
1 − exp

(
−(1 + ϵ )αz

∫ ∞

x
l (t )t−α−1dt

))
dx .

Define f (x ) = α
∫ ∞
x l (t )t−α−1dt . We obtain

m(z) ≲ xϵ +

∫ ∞

xϵ

(
1 − e−(1+ϵ )zf (x )

)
dx

= xϵ + x
(
1 − e−(1+ϵ )zf (x )

) ���∞xϵ +
∫ ∞

xϵ
xde−(1+ϵ )zf (x )

= x
−(1+ϵ )zf (xϵ )
ϵ +

∫ ∞

xϵ
xde−(1+ϵ )zf (x ) ≜ I1 + I2. (71)

For y = f (x ), we have

I2 =

∫ ∞

xϵ
xe−(1+ϵ )zf (x ) (−(1 + ϵ )z f ′(x ))dx =

∫ f (xϵ )

0

(1 + ϵ )z f ← (y)e−(1+ϵ )zydy, (72)

where f ← is the inverse function of f . Let д(x ) = 1/x , h(x ) = д ◦ f (x ), and l1 (x ) = l (x )−1/α
. We

have h(x ) ∼ xα l1
α (x ). By Proposition 1.5.15 of [20], we obtain the asymptotic inverse of h,

h← (x ) ∼ x1/α l#

1
(x1/α ).

Recall ln+1 (x ) ≜ l1 (x/ln (x )),n = 1, 2, . . . and ln (x ) ∼ ln+1 (x ) as x → ∞ for some n ≥ 2. Using

Proposition 2.3.5 of [20], we have l#

1
∼ 1/ln (x ). Therefore,

h← (x ) ∼ x1/α /ln (x
1/α ).

Since h = д ◦ f , we have

h← (x ) = f ← (д← (x )) = f ← (1/x ).

implying, as x → 0,

f ← (x ) = h← (1/x ) ∼
1

x1/α ln (x−1/α )
.

For y = f (xϵ ) small enough, we have

1 − ϵ

y1/α ln (y−1/α )
< f ← (y) <

1 + ϵ

y1/α ln (y−1/α )
. (73)

Combining (72) and (73) yields

I2 < (1 + ϵ )2z

∫ f (xϵ )

0

e−zy

y1/α ln (y−1/α )
dy < (1 + ϵ )2z

∫ ∞

0

e−zy

y1/α ln (y−1/α )
dy.

Using Theorem 1.7.1′ of [20], we obtain, as z → ∞,

z

∫ ∞

0

e−zy

y1/α ln (y−1/α )
dy ∼ Γ(1 − 1/α )z1/α /ln (z

1/α ), (74)

implying

I2 < (1 + ϵ )3Γ(1 − 1/α )z1/α /ln (z
1/α ).

Therefore, using (71), we have, for z large enough,

m(z) ≲(1 + ϵ )3Γ(1 − 1/α )z1/α /ln (z
1/α ) + x

−(1+ϵ )zf (xϵ )
ϵ . (75)
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Next, we prove a lower bound form(z). Recalling (70) and using a similar approach as in (71),

we have

m(z) ≳
∫ ∞

xϵ

(
1 − e−(1−ϵ )zf (x )

)
dx = x

(
1 − e−(1−ϵ )zf (x )

) ���∞xϵ +
∫ ∞

xϵ
xde−(1−ϵ )zf (x )

>

∫ f (xϵ )

0

(1 − ϵ )z f ← (y)e−(1−ϵ )zydy =

(∫ ∞

0

−

∫ ∞

f (xϵ )

)
(1 − ϵ )z f ← (y)e−(1−ϵ )zydy

>

∫ ∞

0

(1 − ϵ )z f ← (y)e−(1−ϵ )zydy − xϵe
−(1−ϵ )zf (xϵ ) .

Using (73) and (74), we obtain

m(z) ≳ (1 − ϵ )2z

∫ f (xϵ )

0

e−zy

y1/α ln (y−1/α )
dy − xϵe

−(1−ϵ )zf (xϵ )

≳ (1 − ϵ )3Γ(1 − 1/α )z1/α /ln (z
1/α ) − xϵe

−(1−ϵ )zf (xϵ ) . (76)

Combining (75) and (76), and passing z → ∞ and then ϵ → 0, we obtain

m(z) ∼ Γ(1 − 1/α )z1/α /ln (z
1/α ). (77)

Define

F (z) =
(α − 1)zα−1

Γ(1 − 1/α )α−1l (z)
.

Now, we show F (z) ∼ Φk (m
← (z)) as z → ∞, which is equivalent to F (m(xα /l (x ))) ∼ Φ(xα /l (x ))

as x → ∞. Using (77), we obtain

F (m(xα /l (x ))) =
α − 1

Γ(1 − 1/α )α−1

m(xα /l (x ))α−1

l (m(xα /l (x )))
∼

(α − 1)xα−1l1 (x )
α−1

ln (xl1 (x ))
α−1

/
l

(
Γ(1 − 1/α )xl1 (x )

ln (xl1 (x ))

)
∼

(α − 1)xα−1c (x )α−1

l (xc (x ))
, (78)

where c (x ) = l1 (x )/ln (xl1 (x )).
Recall ln (y) ∼ ln+1 (y) = l1 (y/ln (y)),y → ∞. For y = xl1 (x ), by Proposition 1.5.15 of [20], we

obtain

x ∼ yl#

1
(y) ∼ y/ln (y),

which implies

ln (xl1 (x )) = ln (y) ∼ l1 (y/ln (y)) ∼ l1 (x ).

Therefore, we obtain

lim

x→∞
c (x ) = lim

x→∞

l1 (x )

ln (xl1 (x ))
= 1. (79)

Combining (4), (78) and (79) yields

Φ(xα /l (x )) ∼ F (m(xα /l (x ))),

which implies

Φk (m
← (z)) ∼ F (z) =

(α − 1)zα−1

Γ(1 − 1/α )α−1l (z)
, as z → ∞.
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Therefore, by Theorem 3.1, we obtain, as x → ∞,

P[C0 > x] ∼
Γ(2 − 1/α )Γ(1 − 1/α )α−1

α − 1

l (x )

xα−1
. (80)

Combining (69) and (80) finishes the proof.

7.4 Proof of Theorem 3.6
The characteristic time approximation gives, for a LRU cache of size x ,

PCT [C0 > x |I0 = k] =

∞∑
i=1

q (k )i e−p
(k )
i T , (81)

where T is the unique solution to

∑∞
i=1

(1 − e−p
◦
i T ) = x . Using (8), (47) and e−y ≤ 1 − y, we derive a

lower bound of (81),

PCT [C0 > x |I0 = k] ≥

∞∑
i=1

q (k )i

(
1 − p (k )i

)T
= P[σ > T |I0 = k] ∼

Γ(βk + 1)

Φk (T )
. (82)

Next, we derive an upper bound. Using a similar approach that proves an upper bound for P[σ >
n |I0 = k] in the proof of Theorem 3.1, we have, for ϵ1 is defined in (50),

PCT [C0 > x |I0 = k] =

iϵ
1∑

i=1

q (k )i e−p
(k )
i T +

∞∑
i=iϵ

1
+1

q (k )i e−p
(k )
i T

≤ e
−p (k )

iϵ
1

T
+

∞∑
i=iϵ

1
+1

q (k )i e−p
(k )
i T ≲

Γ(βk + 1)

Φk (T )
. (83)

Combining (82) and (83) yields, as x → ∞,

PCT [C0 > x |I0 = k] ∼
Γ(βk + 1)

Φk (T )
. (84)

By Lemma 3.4, we haveT ∼m← (x ), which implies (81), by using the fact limx→∞ x βk lk (x )/Φk (x ) =
1 and (84).
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