
Regret-Optimal Learning for Minimizing
Edge Caching Service Costs

Guocong Quan
The Ohio State University

Columbus, USA
quan.72@osu.edu

Atilla Eryilmaz
The Ohio State University

Columbus, USA
eryilmaz.2@osu.edu

Ness Shroff
The Ohio State University

Columbus, USA
shroff.11@osu.edu

Abstract—Edge caching has been widely implemented to ef-
ficiently serve data requests from end users. Numerous edge
caching policies have been proposed to adaptively update cache
content based on various statistics including data popularities
and miss costs. Nevertheless, these policies typically assume that
the miss cost for each data item is known, which is not true in real
systems. A promising approach would be to use online learning to
estimate these unknown miss costs. However, existing techniques
cannot be directly applied, because the caching problem has
additional cache capacity and cache update constraints that are
not covered in traditional learning settings. In this work, we
resolve these issues by developing a novel edge caching policy
that learns uncertainty miss costs efficiently, and is shown to
be asymptotically optimal. We first derive an asymptotic lower
bound on the achievable regret. We then design a Kullback-
Leibler lower confidence bound (KL-LCB) based edge caching
policy, which adaptively learns the random miss costs by fol-
lowing the “optimism in the face of uncertainty” principle. By
employing a novel analysis that accounts for the new constraints
and the dynamics of the setting, we prove that the regret of the
proposed policy matches the regret lower bound, thus showing
asymptotic optimality. Further, via numerical experiments we
demonstrate the performance improvements of our policy over
natural benchmarks.

Index Terms—edge caching, online learning

I. INTRODUCTION

Edge caching has been widely implemented to store data
items closer to end users and accelerate data access. It is
reported that about 50% photo traffic in Facebook are served
by geographically distributed edge caches [1]. Edge caches
typically have limited capacity and can only accommodate a
small fraction of the entire dataset. When the requested data
item is not stored in the edge cache, we call it a cache miss
and the data item has to be fetched from the backend data
storage to serve the request, which will incur a large delay
or cost. A critical question for caching design is which data
items should be stored in the edge cache?

Numerous caching policies have been designed to update
the cache content based on different data statistics. One critical
statistic is the miss cost, i.e., the cost to fetch a data item from
the backend when it is missed by the edge cache. The miss
cost is a general concept depending on the specific application

This work was supported by the NSF grants 2112471, CNS-1717060, CNS-
1955535, CNS-2106933, CNS-NeTS-2007231, CNS-NeTS-2106679, CNS-
SpecEES-1824337, the ARO grant W911NF2110244 and the ONR grant
N00014-19-1-2621.

(e.g., the miss cost could represent the latency or bandwidth
consumed for fetching the missed data). Intuitively, we can
cache data items that may potentially incur larger miss costs,
so that the expected cost to serve the request is minimized. By
following this principle, various caching policies have been
proposed [2], [3], [4], [5], [6]. However, almost all of them
assume that the miss costs are known, which is not the case
in real systems. The miss cost of a data item could be random
and unknown in real systems. For example, the miss cost may
depend on the geographic locations of the backend storage
that sends the missed data back, communication environments,
network traffic flows, etc. Existing caching policies cannot
satisfactorily handle such uncertainty. To fill this gap, we
develop new edge caching policies that learn the uncertain
miss costs adaptively and efficiently.

A promising approach is to use online learning to estimate
these unknown miss costs. However, existing online learning
approaches cannot be directly applied due to the following
reasons. 1) The learning actions and the caching decisions
are correlated and should be jointly optimized. Specifically,
we can observe samples for the uncertain miss costs, only
when the corresponding data item is not stored in the edge
cache. 2) Caching problems have additional cache capacity
and content update constraints that are not covered in the tradi-
tional online learning settings. For example, the cache content
will remain the same, if there are no cache updates, which
naturally introduces time correlations. Due to the dependency
between learning and caching decisions, such time correlations
will exist in the action sets of the learning process. These
constraints make the problem highly non-trivial. We show in
Section III that a heuristic design could almost always make
wrong caching decisions and achieves poor performance.

We address these challenges by designing a novel edge
caching policy that learns the uncertain miss costs efficiently.
In particular, we first characterize the best achievable caching
performance by establishing a regret lower bound. Inspired
by the “optimism in the face of uncertainty” principle in
learning literature [7], [8], we then propose a novel KL-LCB
based edge caching policy that adaptively learns the unknown
miss costs. In order to analyze the theoretical performance
of the proposed policy, we are required to prove almost-sure
convergence results for critical caching statistics, which are not
covered by traditional online learning analysis. Based on these



new results, we prove that the proposed policy achieves the
regret lower bound, and is therefore asymptotically optimal.
Our key contributions are summarized as follows.

• We reveal the non-triviality of learning miss costs in
caching systems. Carefully-designed examples are pro-
vided to show that a heuristic learning design could
achieve significant inefficiency (see Section III).

• We derive a regret lower bound for any “good” polices
(see Section IV), and develop an asymptotically optimal
KL-LCB based edge caching policy that achieves this
regret lower bound (see Section V). The analysis for the
proposed policy employs novel ideas to deal with the new
constraints and dynamics in caching systems, and could
be potentially leveraged to analyze learning mechanisms
for other systems.

• We conduct extensive numerical experiments to evaluate
the proposed KL-LCB based edge caching policy, and
compare it with a few benchmarks. It is shown that the
proposed policy achieves significantly better performance
than the other benchmarks (see Section VI).

Related Works: Cost-based caching policies have been ex-
tensively studied. The GreedyDual policy evicts the data item
with the smallest miss cost when the cache is full [5]. Different
designs have been proposed to implement the Greedy-Dual
policy [4], [3]. The GreedyDual-Size policy considers data
items with different sizes and uses costs per unit data size as a
critical factor for caching update [9]. It is further generalized
as the Greedy-Dual-Size-Frequency (GDSF) policy to make
caching decisions based on the joint effect of data frequency,
sizes and costs [2]. Specifically, the GDSF policy attempts to
cache the data items with large frequency × cost / size values.
In [6], Hyperbolic caching is proposed to provide flexible
caching service for web applications, and is implemented in
real systems such as Redis and Django. It prioritizes data items
based on a general function that could depend on miss costs,
expiration times, windowing, etc. Other factors (e.g., freshness,
latency) are also considered in cost-based policies designed for
a variety of applications [10], [11], [12]. Notably, these works
assume that the miss costs are known. For unknown miss
costs, efficient cost-learning mechanisms jointly optimized
with caching decisions are needed.

Leveraging online learning techniques to improve caching
performance has received more and more attention. However,
most of the existing works in this area focus on learning
unknown data popularities or user preference [13], [14], [15],
[16], [17], [18]. Learning data popularities has different con-
straints and dynamics from learning miss costs. And therefore,
these approaches cannot be extended to directly solve the cost-
learning problem. In [19], fetching costs are considered for
caching at small base stations. The paper first assumes known
cost distributions and develop efficient algorithms to solve the
cost minimization problem. Then, unknown cost distributions
are considered and a Q-learning based approach is proposed
to estimate the unknown cost distributions. However, no the-
oretical performance guarantee is provided for this approach.

II. PROBLEM FORMULATION

In this section, we first introduce the system model for
edge caching with uncertain miss costs. Next, we formulate
a service cost minimization problem for solving the optimal
edge caching policy. We then define the regret to measure the
performance of an edge caching policy.

A. System Model

Consider an edge caching scenario with three layers of
storage devices composed of edge caches, intermediate caches
and backend data centers as illustrated in Fig. 1. Edge caches
are placed at the network edges (e.g., on base stations) and
are the closest to the end users. Edge caches have very limited
cache capacity and can only store a small fraction of the
entire dataset. Multiple edge caches are connected to the same
intermediate cache. Intermediate caches typically have larger
capacity than the edge caches, but still cannot accommodate
the entire dataset. Multiple intermediate caches are connected
to a backend data center, which stores the entire dataset. In
this paper, we focus on a single edge cache and investigate
how to develop an optimal content update policy for it.

Fig. 1: Edge caching with disparate service costs.

We consider a discrete-time system with time t = 1, 2, · · · .
Let D = {d1, d2, · · · , dN} be a set of N data items, where
the item sizes are set to be 1. Assume the capacity of the edge
cache is K, 1 ≤ K < N . At each time slot t, a data request
will be generated and sent to the edge cache. Let Rt denote the
data item requested at time t, Rt ∈ D. We characterize Rt by
the Independent Reference Model (IRM), which is commonly
assumed in caching analysis [20], [21]. Specifically, the data
requests are i.i.d. generated based on the known popularity
pi

∆
= P[Rt = di], with pi ∈ (0, 1) and

∑N
i=1 pi = 1. Once a

data request is received, we will first try to serve the request
from the edge cache. If the requested data is stored in the edge
cache, which is a cache hit, then we can serve the request
immediately at a small cost cE . However, if the data is not
stored in the edge cache, (i.e., a cache miss occurs), we need
to fetch the data from the other two storage layers and the cost
will depend on where we obtain the data. Specifically, we will
first try to fetch the data from the intermediate caches. If the
requested data is stored there, we can serve the request at a
relatively large cost cI . Otherwise, we have to serve the request
from the backend storage which will incur the largest service



cost cB . We assume that cE , cI , cB are known 1 and satisfy
cB > cI > cE ≥ 0. This three-layer storage architecture is
commonly used in today’s content delivery networks [1].

The key challenge for designing efficient cost-based edge
caching policy is that the cost of an edge cache miss depends
on whether the missed data is served from the intermediate
cache or the backend data centers, which is unknown a priori,
because it is impractical for an edge cache to keep track of
the data items stored in the intermediate cache. The reason
is twofold. First of all, each intermediate cache will serve
requests from multiple edge caches. Therefore, it is impossible
for an edge cache to infer the data stored in the intermediate
cache based on its own traffic. Second, it is impractical for
the intermediate cache to notify the edge caches about the
data stored in it in real time, since the data stored in the
intermediate cache will be updated frequently based on the
traffic aggregated from multiple edge caches. Therefore, to
model this uncertainty, we use a Bernoulli random variable
with unknown parameter to indicate whether a data item is
stored in the intermediate cache or not. For each data item di,
we assume it is not stored in the intermediate cache with a
probability qi, 0 < qi < 1, independently in each time slot.
We assume that qi is unknown to the edge cache and needs
to be estimated for designing efficient edge caching policies.
Notably, the design and analysis of this paper could be used in
general application scenarios beyond edge caching, as long as
the miss costs are modeled by the Bernoulli random variables.

Before we delve into our design and analysis within the
above framework, we would like to note that our results can be
generalized to allow for unknown item popularities and non-
identical item sizes. In particular, the unknown popularities can
be integrated by estimating them through observations. Also,
incorporating non-identical sizes can be achieved by using
approaches similar to those in [2], [6]. Detailed discussions
on generalization are presented in the technical report [22].

B. Edge Caching for Cost Minimization

The focus of this paper is to design an efficient edge caching
policy that decides which data items should be stored in the
edge cache. For each data item di and a time horizon n, define

T in
i (n) =

n∑
t=1

1(di is stored in the edge cache at time t),

T out
i (n) =

n∑
t=1

1(di is not stored in the edge cache at time t).

T in
i (n) and T out

i (n) are random variables and depend on the
edge caching policy. For a time horizon n, let Cost(n) denote
the expected overall service cost accumulated from t = 1 to
t = n. Define

γi = qicB + (1− qi)cI − cE ,

1Although we know the cost to fetch data items from a specific storage,
the miss cost of the edge cache is still uncertain, since the missed item could
be fetched from the intermediate cache or the backend data centers, which is
unknown a priori.

which can be interpreted as the cost reduction achieved by
storing di in the edge cache. We have

Cost(n) =
N∑
i=1

E[T in
i (n)]picE

+
N∑
i=1

E[T out
i (n)]pi(qicB + (1− qi)cI)

=ncE +
N∑
i=1

E[T out
i (n)]piγi, (1)

where the last equation holds because T in
i (n) + T out

i (n) = n
for each data item di.

Our objective is to find the edge caching policy that
minimizes the expected accumulated cost Cost(n). When the
parameter qi’s are known, it is easy to observe that the optimal
policy is to always store the data items with the largest piγi
values in the edge cache. Without loss of generality, we assume
that the data items could be strictly ordered based on piγi and
are indexed such that piγi > pjγj for any 1 ≤ i < j ≤ N .
Note that the results of this paper can be easily extended
to the case without the strict ordering (i.e., existing i 6= j
with piγi = pjγj). For the sake of better readability and
clearer presentation, we focus on the case with strict ordering
in this paper. According to the indexing rule, when qi’s are
known, the optimal policy stores di’s, 1 ≤ i ≤ K, in the
edge cache, where K is the edge cache capacity. We call the
set {di : 1 ≤ i ≤ K} the optimal choice set, and the set
{di : K + 1 ≤ i ≤ N} the suboptimal choice set.

In this paper, we consider a more realistic setting where
qi is unknown for reasons that are described in the previous
subsection. Consequently, γi is also unknown, being a function
of qi. Thus, we need to adaptively learn qi’s and update the
caching content accordingly. In particular, a caching policy
needs to make the following decisions. When an edge cache
miss occurs, we will fetch the requested data item from the
intermediate cache or, if not in the intermediate cache, from
the backend data center, and decide whether to load it into the
edge cache. And if the edge cache is full, we need to decide
which data item should be evicted to accommodate this new
item. Notably, we are not allowed to load a data item into
the edge cache if it is not requested, because this will incur
additional costs to fetch it.

The performance of edge caching policies will be evaluated
by regrets. This is a classical learning metric which charac-
terizes the difference between the expected accumulated cost
achieved by an edge caching policy and the one achieved by
the optimal policy with known qi’s. Formally, we define the
regret over a time horizon n as

Regret(n) = Cost(n)

− n

(
K∑
i=1

picE +
N∑

i=K+1

pi(qicB + (1− qi)cI)

)
.

Minimizing the expected accumulated cost Cost(n) is equiv-
alent to minimizing Regret(n).



III. MOTIVATION AND CHALLENGES

In this section, we first introduce our motivation by show-
ing that a natural heuristic design could achieve significant
inefficiency. To solve this issue, we propose to leverage
online learning to adaptively estimate the unknown parameters.
However, existing online learning algorithms do not consider
the specific constraints and dynamics in caching systems and
therefore cannot be applied directly. We then introduce the
challenges of combining online learning and caching.

A. Motivation: Substandard Performance of Heuristic Designs

An edge caching policy needs to estimate the unknown
parameter qi based on history information and make caching
decisions accordingly. Define

Tmiss
i (t) =

t∑
s=1

1(diis requested and missed

from the edge cache at time s), (2)

T back
i (t) =

t∑
s=1

1(diis requested and served

from the backend data center at time s). (3)

Recall that qi is the probability that the data item di is not
stored in the intermediate cache. An unbiased estimation of qi
at time t is the sample mean

q̂i(t) = T back
i (t)/Tmiss

i (t). (4)

A heuristic caching policy is to estimate γi by

γ̂i(t) = q̂i(t)cB + (1− q̂i(t)) cI − cE , (5)

and evict the data item with the smallest piγ̂i(t) value when the
cache is full. We formally describe this heuristic edge caching
policy in Algorithm 1. Next, we will introduce a toy example
showing that the heuristic policy could be problematic.

Algorithm 1: Heuristic Edge Caching Policy

1 Initialization: Tmiss
i (0) = T back

i (0) = q̂i(0) = 0,
γ̂i(0) = cI − cE , 1 ≤ i ≤ N ;

2 for t = 1 : n do
3 if Rt is not stored in the edge cache then
4 Let i denote the index of Rt;
5 Update Tmiss

i (t),T back
i (t), q̂i(t) and γ̂i(t) based

on (2), (3), (4) and (5), respectively;
6 if Edge cache is full then
7 j = argmin{pkγ̂k(t) :

dk is currently stored in the edge cache};
8 if piγ̂i(t) > pj γ̂j(t) then
9 Load di into the edge cache and evict

dj ;
10 end

Example 1. Consider two data items and an edge cache with
size 1 (i.e., K = 1). Set p1 = p2 = 0.5, q1 = 0.5, q2 = 0.1,

Time t 1 2 3 4 5
Data request Rt d2 d1 d2 d1 d2
d1 in intermediate cache True True False False True
d2 in intermediate cache False True True True True
q̂1(t) 0 0 0 1/2 1/2
q̂2(t) 1 1 1 1 1
Edge cache content d2 d2 d2 d2 d2

TABLE I: Request trace for the toy example.

cE = 1, cI = 2, cB = 10. Table I gives an example trace for
data requests as well as whether the requested data is stored in
the intermediate cache. Assume that the edge cache is initially
empty. We calculate q̂i(t) and make caching decisions based
on the heuristic policy. Note that the optimal solution is to
store d1 in the edge cache. However, for this example, d1 will
never be cached by the heuristic edge caching policy.
• For t = 1, d2 is requested. Since the edge cache is

initially empty, it is a miss. Moreover, d2 is not stored in
the intermediate cache. We will fetch d2 from the backend
data center and load it into the edge cache. According
to (4), q2 is estimated as 1 at t = 1.

• For t = 2, d1 is requested and missed. We fetch it from
the intermediate cache and update the estimation for q1.
Since p2γ̂2(2) > p1γ̂1(2), we will not update the cache
content.

• For t ≥ 3, since the request for d2 can be directly served
from the edge cache, we will not be able to observe
whether d2 is stored in the intermediate cache and update
q̂2(t). Consequently, p1γ̂1(t) < p2γ̂2(t) always holds.
The heuristic policy will always store d2 in the edge
cache regardless of future data requests, and achieves
substandard performance.

This example reveals a severe problem of the heuristic
edge caching policy: the inaccurate estimation at the early
stage could make the edge cache stop collecting observations
for already cached data items and get stuck in a suboptimal
solution. In order to solve this issue, we are motivated to
leverage online learning techniques to estimate qi and update
cache content strategically.

B. Our Approach: Adaptive Caching via Online Learning

We first highlight an exploration and exploitation tradeoff
for the proposed edge caching problem:
Exploration: On the one hand, we would like to not store data
items in the edge cache intentionally, since this could trigger
cache misses and collect more observations on the miss cost,
and therefore, help us make more accurate estimation for qi’s.
Exploitation: On the other hand, we want to exploit the
current estimation and cache the items with the largest piγ̂i(t).
This could potentially minimize the overall service costs.

The proposed heuristic policy only exploits but never ex-
plores, and therefore performs quite poorly. In order to effi-
ciently learn the unknown parameters and meanwhile achieve
good caching performance, we have to balance the exploration
and exploitation tradeoff. This tradeoff has been extensively
studied in online learning literature (in particular, the multi-
armed bandit (MAB) problems [7]). The key idea of MAB



algorithms is to encourage exploration by adding an under-
estimate of qi that changes with time and new samples. As
a result, a cached data item will be eventually evicted when
the estimated qi is small enough. Then, a new observation
for the miss cost will be observed, and the estimation will be
updated. However, the conventional algorithm and analysis for
MAB problems cannot be directly applied to the edge caching
system due to the additional cache capacity and cache update
constraints, which makes the problem highly non-trivial.

C. Key Challenge: Learning with Caching Constraints

First, we point out that the proposed edge caching problem
share some similarities with conventional combinatorial multi-
armed bandit problem. In particular, it is similar to stochastic
combinatorial semi bandits with N arms in total and N −
K arms played at each time slot. Once an arm is played,
a random cost will be incurred. The cost of playing the ith

arm is pi(cB − cE) with probability qi and pi(cI − cE) with
probability 1−qi. And the total cost of each time slot is equal
to the sum of the costs incurred by the N −K played arms.
The objective of this bandit problem is to minimize the overall
accumulated costs.

Notably, the edge caching problem has additional con-
straints compared with the combinatorial bandit problem:
• At each time slot, the edge caching policy can only update

one cached data item, while the bandit problem has no
such constraints.

• The data items that can be stored at time t depend on an
external random process, (i.e., the data request), as well
as the cache content at the previous time slot t − 1. In
contrast, the action set of bandit problems typically does
not depend on time or external random processes.

These constraints in edge caching systems make the problem
more challenging. Consequently, the standard bandit algo-
rithms and analysis cannot be directly applied. To solve this
issue, we need to propose novel edge caching policies and use
new theoretical tools to analyze its performance. To that end,
in the next section, we derive a regret lower bound over all
policies of interest, followed in the subsequent section by a
new design with a novel regret upper bound that matches the
scaling of the lower bound, thereby proving its asymptotic-
optimality.

IV. REGRET LOWER BOUND

Before designing edge caching polices, we first derive a
lower bound for the regret performance of all “good” policies.
Following the approach of the seminal work [23], we say that
an edge caching policy is a uniformly good policy, if the regret
achieved by it satisfies Regret(n) = o(nα) for ∀α > 0.
Let DKL(p, q) denote the Kullback–Leibler divergence for
two Bernoulli random variables with parameter p and q,
respectively. We have for 0 < p < 1 and 0 < q < 1,

DKL(p, q) = p log
p

q
+ (1− p) log 1− p

1− q
.

We prove a regret lower bound in the following theorem.

Theorem 1. For any uniformly good policy, the regret satisfies

lim inf
n→+∞

Regret(n)

log n

≥
∑
i∈S

piγi − pK+1γK+1

DKL

(
qi,

pK+1γK+1−pi(cI−cE)
pi(cB−cI)

)
· pi

,

where S = {1 ≤ i ≤ K : pi(cI − cE) < pK+1γK+1}.

Theorem 1 shows that the regret increases at least logarith-
mically with the particular coefficient on the right hand side
asymptotically with the time horizon n, if the set S is not
empty. Recall that the data items are indexed such that piγi
is decreasing. We make a few remarks for this result:
• The constant on the right hand side of the regret lower

bound depends on the “distance”, as measured by the
piγi values and a specific form of the Kullback–Leibler
divergence, between the data items in the optimal choice
set (i.e, di, 1 ≤ i ≤ K) and the best data item in the
suboptimal choice set (i.e., dK+1).

• The scaling is independent of the total number of items
N , i.e., arms, in the dataset D. This is different from most
MAB regret performances where the number of arms is
a scaling factor. This property arises due to the particular
structure of our caching system, whereby subsets of data
items (i.e., arms) are being selected.

• The proof of this theorem is not a simple application
of the proof for classic MAB problems, considering the
data request dynamics and cache capacity and update
constraints of the edge caching systems. Detailed proofs
are presented in the technical report [22].

Moreover, note that for di /∈ S with 1 ≤ i ≤ K and dj
with K + 1 ≤ j ≤ N , we must have

piγi = pi(qicB + (1− qi)cI − cE) > pi(cI − cE)
≥ pK+1γK+1 ≥ pjγj ,

for ∀qi ∈ (0, 1), which indicates that we could easily distin-
guish di from the suboptimal choice set (i.e., dj , K+1 ≤ j ≤
N ), even when the estimation of qi is arbitrarily chosen. Thus,
the scenario with empty S degenerates to a trivial problem and
is not the main focus of this paper.

V. KL-LCB BASED EDGE CACHING POLICY

In this section, we first propose a novel edge caching policy
that leverages online learning ideas. Then, we prove that
the proposed policy achieves asymptotically optimal regret.
Instead of estimating qi by the sample mean q̂i(t) like the
heuristic policy, we follow the principle of “optimism in the
face of uncertainty” [7] and use an underestimate q̃i(t), which
is defined as

q̃i(t) = min

{
q ∈ (0, 1) : DKL(q̂i(t), q) ≤

log f(t)

Tmiss
i (t)

}
, (6)

where q̂i(t) is defined in (4) and f(t) = 1 + t(log t)2. We
have 0 < q̃i(t) ≤ q̂i(t) and the “distance” between q̃i(t)
and q̂i(t) is characterized by log f(t)/Tmiss

i (t). This design is



inspired by the KL-UCB algorithm for reward maximization
in conventional stochastic MAB problems [24], [25]. For the
edge caching problem, our objective is cost minimization
rather than reward maximization. Therefore, we apply the KL-
LCB based design, which is symmetric to KL-UCB.

Next, we estimate γi by

γ̃i(t) = q̃i(t)cB + (1− q̃i(t)) cI − cE . (7)

Based on γ̃i(t), we propose a KL-LCB based edge caching
policy, which is described in Algorithm 2. When the data
request is served by the edge cache, we do not update the cache
content. When the requested data (e.g., di) is not stored in the
edge cache, we will fetch di from the intermediate cache, or,
if it is not stored there, from the backend data center. Then,
we find the cached data item dj with the smallest pj γ̃j(t)
values among all cached data items. If piγ̃i(t) > pj γ̃j(t),
then we will replace the cached data item dj by the newly-
requested data item di. On the one hand, the proposed policy
attempts to cache the data items with large piγ̃i(t) values,
which exploits the current knowledge. On the other hand,
log(t)/Tmiss

i (t) will increase with time t, if there are no misses
observed. Consequently, if di is currently cached, q̃i(t) as well
as γ̃i(t) will gradually decrease with time t. And di will finally
be evicted when piγ̃i(t) is small enough, which encourages
exploration.

Algorithm 2: KL-LCB based Edge Caching Policy

1 Initialization: Tmiss
i (0) = T back

i (0) = q̂i(0) = q̃i(0) = 0,
γ̂i(0) = cI − cE , 1 ≤ i ≤ N ;

2 for t = 1 : n do
3 if Rt is not stored in the edge cache then
4 Let i denote the index of Rt;
5 Update Tmiss

i (t), T back
i (t), q̂i(t), q̃i(t) and γ̃i(t)

based on (2), (3), (4), (6) and (7), respectively;
6 if Edge cache is full then
7 j = argmin{pkγ̃k(t) :

dk is currently stored in the edge cache};
8 if piγ̃i(t) > pj γ̃j(t) then
9 Load di into the edge cache and evict

dj ;
10 end

A. Regret Upper Bound and Asymptotic Optimality

We first provide theoretical performance guarantees for the
proposed KL-LCB based edge caching policy by deriving a
regret upper bound in Theorem 2.

Theorem 2. For the proposed KL-LCB based policy, we have

lim sup
n→+∞

Regret(n)

log n

≤
∑
i∈S

piγi − pK+1γK+1

DKL

(
qi,

pK+1γK+1−pi(cI−cE)
pi(cB−cI)

)
· pi

,

where S = {1 ≤ i ≤ K : pi(cI − cE) < pK+1γK+1}.

It is easy to observe that the upper bound derived in
Theorem 2 matches the lower bound derived in Theorem 1.
Thus, we can conclude that the KL-LCB based edge caching
policy is asymptotically optimal if the set S is not empty.

It is well known that the KL-UCB policy achieves asymp-
totically optimal regrets for conventional stochastic MAB
problems with Bernoulli-distributed rewards. One question is
whether the KL-LCB based edge caching policy proposed
in this paper is a simple application of the KL-UCB policy.
The answer is no. Although the miss cost estimation in the
proposed edge caching policy is symmetric to the reward
estimation in KL-UCB, the theoretical analysis of the pro-
posed edge caching policy is much more challenging for the
following reasons:
• The nature of edge caching systems imposes significant

complexity into performance analysis. Specifically, the
caching capacity constraint introduces a non-traditional
combinatorial structure, i.e., multiple data items could be
cached at each time slots. The cache update rule brings
time correlations into action sets. In particular, the data
items that can be cached at a time slot t depend on the
data items that were already cached at the previous time
slot t−1, while in the original KL-UCB setting, the action
sets have no such time correlations.

• The data request process introduces new dynamics com-
pared to the original MAB settings. Specifically, the
caching decisions (i.e., the action set) at each slot depend
on a random data request, while in the original KL-UCB
setting, there is no such dependency.

Simply applying existing analysis of the KL-UCB policy
cannot resolve these challenges. Instead, we need to develop
novel approaches in this paper to analyze the theoretical
performance. In particular,
• We characterize the nature of the caching systems by

exploring the relationship between Tmiss
i (n), T out

i (n) and
T in
i (n), 1 ≤ i ≤ N .

• Instead of showing the convergence in expectation for
critical statistics as in the conventional MAB analysis, our
setting requires a much stronger almost-sure convergence
results, which require non-trivial new analysis.

Next, we will show a sketch of proof for the key Theorem 2.

B. Sketch of Proof for Theorem 2

Due to the page limit, we present the proof of Theorem 2
in the technical report [22] and introduce a sketch of the proof
in this section. We start by establishing a few lemmas.

Lemma 1. The regret of the KL-LCB based edge caching
policy can be upper bounded as

Regret(n) ≤
K∑
i=1

E[T out
i (n)]piγi − E[T in

K+1(n)]pK+1γK+1.

Lemma 1 provides a regret upper bound related to the costs
introduced by the optimal choice set (i.e., di, 1 ≤ i ≤ K) and
best suboptimal choice (i.e., dK+1). To connect this upper



bound with Theorem 2, we need to characterize E[T out
i (n)],

1 ≤ i ≤ K, and E[T in
K+1(n)] under the proposed KL-LCB

based policy.

Lemma 2. Under the KL-LCB based policy, we have, for
1 ≤ i ≤ K, if pi(cI − cE) < pK+1γK+1,

lim sup
n→+∞

E [T out
i (n)]

log n

≤ 1
/(

pi ·DKL

(
qi,

pK+1γK+1 − pi(cI − cE)
pi(cB − cI)

))
, (8)

and limn→+∞ E [T out
i (n)] / log n = 0 if pi(cI − cE) ≥

pK+1γK+1

Lemma 2 shows an upper bound for E[T out
i (n)], 1 ≤ i ≤

K, under the proposed KL-LCB based policy. Next, we will
prove a relationship between E[T out

i (n)], 1 ≤ i ≤ K, and
E[T in

K+1(n)], which is the most critical and challenging part
for the proof of Theorem 2.

Lemma 3. If pi(cI − cE) < pK+1γK+1 for some 1 ≤ i ≤ K,
then under the KL-LCB based edge caching policy, we have

lim
n→+∞

E[T in
K+1(n)]∑K

i=1 E[T out
i (n)]

= 1.

Lemma 3 indicates that under the KL-LCB based edge
caching policy, the duration of time when the cache content is
not the optimal choice set (i.e.,

∑K
i=1 E[T out

i (n)]) is asymptot-
ically equal to the duration of time when the best suboptimal
choice is stored in the cache (i.e, E[T in

K+1(n)]). In other words,
when the time horizon n is large, the proposed edge caching
policy only gets confused with the best suboptimal data item
dK+1, and is pretty sure that other suboptimal data items (i.e.,
di, K + 2 ≤ i ≤ N ) should not be cached. Intuitively, this
result makes a lot of sense, because other suboptimal data
items have a larger gap with the optimal choice set and should
be easier to distinguish. However, proving this fact rigorously
requires establishing the almost sure convergence for critical
statistics including q̃i(t), Tmiss

i (t), etc.
With these established lemmas, we are ready to prove

Theorem 2.

Proof of Theorem 2. Combining Lemmas 1, 2 and 3, we have

lim sup
n→+∞

Regret(n)

log n

≤ lim sup
n→+∞

∑K
i=1 E[T out

i (n)]piγi − E[T in
K+1(n)]pK+1γK+1

log n
(9)

= lim sup
n→+∞

∑K
i=1 E[T out

i (n)](piγi − pK+1γK+1)

log n
(10)

≤
∑
i∈S

piγi − pK+1γK+1

DKL

(
qi,

pK+1γK+1−pi(cI−cE)
pi(cB−cI)

)
· pi

, (11)

where S = {1 ≤ i ≤ K : pi(cI − cE) < pK+1γK+1}. Note
that Equations (9), (10) and (11) leverage Lemmas 1, 3 and
2, respectively.

VI. EVALUATION

In this section, we will evaluate the empirical performance
of the proposed policies. In Experiment 1, we evaluate the
regret achieved by the KL-LCB based policy as well as the
heuristic policy. In Experiment 2, we consider the scenario
where the data popularities are unknown. We simulate a
generalized KL-LCB based policy and compare it with a few
benchmarks including LRU, LFU and a generalized heuristic
policy that is a variant of GDSF.

Experiment 1: In this experiment, we evaluate the per-
formance achieved by the proposed KL-LCB based edge
caching policy (i.e., Algorithm 2) and the heuristic policy
(i.e., Algorithm 1). Consider a total number of 1000 data
items. Set the cache capacity K = 100, cE = 1, cI = 5,
cB = 100. Assume that data popularities follow a Zipf’s
distribution, which has been validated by real data traces [26],
[27], [1]. Specifically, set pi = c · i−0.4, 1 ≤ i ≤ 1000,
where c = 1/

∑1000
i=1 i−0.4 = 9.61×10−3 is the normalization

factor. Set qi = 0.2 for 1 ≤ i ≤ 500 and qi = 0.9 for
501 ≤ i ≤ 1000. Thus, a more popular data item will have a
larger probability (i.e., 1− qi) to be stored in the intermediate
cache. Notably, in previous sections, we assumed that data
items are indexed such that piγi is decreasing for the ease
of analysis and presentation. However, in this experiment, the
data items are indexed such that the popularity pi is decreasing.

We simulate the proposed KL-LCB based policy and the
heuristic policy for a time horizon n ranging from 2000 to
20000. Each experiment is repeated for 30 times to obtain the
average accumulated costs. Regrets are calculated based on
the average accumulated costs and plotted in Fig. 2. It can be
observed that the KL-LCB based policy achieves much better
performance than the heuristic policy. Moreover, the heuristic
policy achieves a linear regret, while the KL-LCB policy
achieves a sublinear (theoretically proven to be logarithmic)
regret, which has been established in Theorems 1 and 2.

0 0.4 0.8 1.2 1.6 2

10
4

0

2

4

6

8
10

4

Heuristic

KL-LCB based

Fig. 2: KL-LCB based edge caching policy achieves better
performance than the heuristic policy.

Experiment 2: In this experiment, we consider the sce-
nario where data popularities are unknown. To handle un-
known popularities, in each time slot t, we estimate pi by
p̂i(t) =

∑t
s=1 1(di is requested at time s)/t, and generalize

the heuristic and the KL-LCB based edge caching policies
by replacing pi in Algorithms 1 and 2 with p̂i(t). More
details of this generalization are presented in the technical



report [22]. Note that the generalized heuristic policy is a
variant of the GDSF policy [2] for unknown costs and identical
data sizes. We also simulate the LFU and LRU polices, which
are commonly adopted for unknown popularity, but do not
account for the service costs. We use the same parameter
setting as in Experiment 1, and present the numerical results in
Fig. 3. We can observe that the KL-LCB based policy achieves

0 1 2 3 4 5

10
4

0

4

8

12

16
10

4

LRU

LFU

Heuristic

KL-LCB based

Fig. 3: KL-LCB based edge caching policy generalized for
unknown data popularity.

distinctly smaller regrets than all the alternatives. Interestingly,
the heuristic policy achieves similar performance with LFU
that does not employ any cost information. This insightful
observation indicates that the heuristic policy cannot fully
utilize the cost information and validates the importance of the
carefully designed cost learning in the KL-LCB based policy.
The LRU policy achieves the worst performance, since it does
not fully utilize historical request records or cost information.

VII. CONCLUSION

Existing cost-based caching policies typically assume
known miss costs, which is not always the case in real systems.
To address this issue, we focused on an edge caching scenario
with unknown miss costs and developed novel caching policies
that learn the miss costs efficiently. By presenting a carefully-
designed example, we first show that a heuristic learning
design could induce significant caching inefficiency. We then
derived a regret lower bound for any uniformly good policy.
Inspired by the “optimism in the face of uncertainty” principle
in online learning literature, we developed a KL-LCB based
edge caching policy and proved that it achieves the regret
lower bound and therefore is asymptotically optimal. Extensive
numerical experiments indicate the proposed policy signifi-
cantly improves caching performance over other benchmarks.
The novel techniques used in this work to handle caching
constraints and dynamics could be potentially leveraged to
design and analyze learning mechanisms for other systems.

REFERENCES

[1] Q. Huang, K. Birman, R. Van Renesse, W. Lloyd, S. Kumar, and H. C.
Li, “An analysis of facebook photo caching,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles, 2013,
pp. 167–181.

[2] L. Cherkasova, Improving WWW proxies performance with greedy-dual-
size-frequency caching policy. Hewlett-Packard Laboratories, 1998.

[3] P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms.” in
Usenix symposium on internet technologies and systems, vol. 12, no. 97,
1997, pp. 193–206.

[4] C. Li and A. L. Cox, “Gd-wheel: a cost-aware replacement policy for
key-value stores,” in Proceedings of the Tenth European Conference on
Computer Systems, 2015, pp. 1–15.

[5] N. Young, Competitive paging and dual-guided on-line weighted caching
and matching algorithms. Princeton University, 1991.

[6] A. Blankstein, S. Sen, and M. J. Freedman, “Hyperbolic caching: Flex-
ible caching for web applications,” in 2017 USENIX Annual Technical
Conference (USENIX ATC 17), 2017, pp. 499–511.

[7] T. Lattimore and C. Szepesvári, Bandit algorithms. Cambridge Uni-
versity Press, 2020.

[8] I. Szita and A. Lőrincz, “The many faces of optimism: a unifying
approach,” in Proceedings of the 25th international conference on
Machine learning, 2008, pp. 1048–1055.

[9] P. Cao and S. Irani, “Greedydual-size: A cost-aware www proxy caching
algorithm,” in 2nd Web Caching Workshop, Boulder, Colorado, 1997.

[10] B. Hou and F. Chen, “Gds-lc: A latency-and cost-aware client caching
scheme for cloud storage,” ACM Transactions on Storage (TOS), vol. 13,
no. 4, pp. 1–33, 2017.

[11] J. Shim, P. Scheuermann, and R. Vingralek, “Proxy cache algorithms:
Design, implementation, and performance,” IEEE Transactions on
Knowledge and Data Engineering, vol. 11, no. 4, pp. 549–562, 1999.

[12] S. Liang, K. Chen, S. Jiang, and X. Zhang, “Cost-aware caching
algorithms for distributed storage servers,” in International Symposium
on Distributed Computing. Springer, 2007, pp. 373–387.

[13] J. Song, M. Sheng, T. Q. Quek, C. Xu, and X. Wang, “Learning-based
content caching and sharing for wireless networks,” IEEE Transactions
on Communications, vol. 65, no. 10, pp. 4309–4324, 2017.

[14] A. Sengupta, S. Amuru, R. Tandon, R. M. Buehrer, and T. C. Clancy,
“Learning distributed caching strategies in small cell networks,” in 2014
11th International Symposium on Wireless Communications Systems
(ISWCS). IEEE, 2014, pp. 917–921.

[15] X. Xu, M. Tao, and C. Shen, “Collaborative multi-agent multi-armed
bandit learning for small-cell caching,” IEEE Transactions on Wireless
Communications, vol. 19, no. 4, pp. 2570–2585, 2020.

[16] A. Bura, D. Rengarajan, D. Kalathil, S. Shakkottai, and J.-F. Cham-
berland, “Learning to cache and caching to learn: Regret analysis of
caching algorithms,” IEEE/ACM Transactions on Networking, 2021.

[17] P. Blasco and D. Gündüz, “Multi-armed bandit optimization of cache
content in wireless infostation networks,” in 2014 IEEE International
Symposium on Information Theory. IEEE, 2014, pp. 51–55.

[18] ——, “Learning-based optimization of cache content in a small cell base
station,” in 2014 IEEE International Conference on Communications
(ICC). IEEE, 2014, pp. 1897–1903.

[19] A. Sadeghi, F. Sheikholeslami, A. G. Marques, and G. B. Giannakis,
“Reinforcement learning for adaptive caching with dynamic storage
pricing,” IEEE Journal on Selected Areas in Communications, vol. 37,
no. 10, pp. 2267–2281, 2019.

[20] S. Vanichpun and A. M. Makowski, “The output of a cache under the
independent reference model: where did the locality of reference go?” in
Proceedings of the joint international conference on Measurement and
modeling of computer systems, 2004, pp. 295–306.

[21] R. Fagin and T. G. Price, “Efficient calculation of expected miss ratios in
the independent reference model,” SIAM Journal on Computing, vol. 7,
no. 3, pp. 288–297, 1978.

[22] G. Quan, A. Eryilmaz, and N. Shroff. (2022) Regret-optimal
learning for minimizing edge caching service costs (technical
report). [Online]. Available: https://www2.ece.ohio-state.edu/∼eryilmaz/
learningCaching-TR.pdf

[23] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in applied mathematics, vol. 6, no. 1, pp. 4–22, 1985.

[24] T. L. Lai, “Adaptive treatment allocation and the multi-armed bandit
problem,” The Annals of Statistics, pp. 1091–1114, 1987.

[25] O. Cappé, A. Garivier, O.-A. Maillard, R. Munos, and G. Stoltz,
“Kullback-leibler upper confidence bounds for optimal sequential al-
location,” The Annals of Statistics, pp. 1516–1541, 2013.

[26] Y. Yang and J. Zhu, “Write skew and Zipf distribution: Evidence and
implications,” ACM transactions on Storage (TOS), vol. 12, no. 4, pp.
1–19, 2016.

[27] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and zipf-like distributions: Evidence and implications,” in IEEE IN-
FOCOM’99. Conference on Computer Communications. Proceedings.
Eighteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. The Future is Now (Cat. No. 99CH36320), vol. 1.
IEEE, 1999, pp. 126–134.

https://www2.ece.ohio-state.edu/~eryilmaz/learningCaching-TR.pdf
https://www2.ece.ohio-state.edu/~eryilmaz/learningCaching-TR.pdf

	Introduction
	Problem Formulation
	System Model
	Edge Caching for Cost Minimization

	Motivation and Challenges
	Motivation: Substandard Performance of Heuristic Designs
	Our Approach: Adaptive Caching via Online Learning
	Key Challenge: Learning with Caching Constraints

	Regret Lower Bound
	KL-LCB Based Edge Caching Policy
	Regret Upper Bound and Asymptotic Optimality
	Sketch of Proof for Theorem 2

	Evaluation
	Conclusion
	References

