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Abstract—Least-recently-used (LRU) caching systems have
been widely used, and are increasingly deployed driven by
emerging trends for big data. In a typical scenario, these systems
are used to serve multiple flows of dependent data item requests
that are also correlated over time. These flows compete for
the limited cache space. Characterizing the miss ratios of these
competing flows can facilitate the design and improve the system
performance. The existing asymptotic analyses for correlated
requests give explicit results for Zipf’s distributions with the
index greater than a critical value (one). Consequently, the
asymptotic result is inaccurate around this critical point, which
notably is also the typical parameter region reported by many
empirical measurements. In contrast, we derive the asymptotic
miss ratios of multiple flows for a large class of truncated heavy-
tailed data item popularity distributions with time dependency.
Importantly, it significantly improves the accuracy in numerical
computations when the index of a Zipf’s distribution is close to
one. Moreover, the result generalizes beyond Zipf’s distributions,
e.g., to Weibull, for multiple flows of correlated data item
requests. Our asymptotic result directly exploits the critical
properties of the distribution and the truncated support region.
As our versatile expression is explicit, it avoids the numerical
computations required by the characteristic time approximation.
Interestingly, it also validates the characteristic time approxima-
tion with new forms for multiple flows of competing requests that
are correlated over time under certain conditions.

I. INTRODUCTION

Caching systems are a core component of Internet data in-
frastructures. They greatly improve the performance of various
Web services, e.g., for information retrieval, data analytics, so-
cial networks and e-commence, by enabling low-cost access to
a fast, but limited cache space. From a large collection of data
records that are stored in slow but persistent media, a selective
subset of popular data items can be temporarily put in the
cache to accelerate data processing. Driven by emerging trends
for big data, caching systems are widely deployed [1], [2],
[3], [4]. They typically serve multiple flows of data requests
that are also correlated over time [5], [6], which compete
for the limited cache space. These flows of requests could
have different data popularities, time correlations, varying item
sizes, different request rates and even overlapped data items
shared across different flows, which jointly impact system
performances.

In current engineering, the least-recently-used (LRU) algo-
rithm and its extensions [7], [8], [9], [10] have been widely
used in data caching systems [1], [11], [5], [2], [3], [4]. The

This work was supported by the National Science Foundation under Grant
No. 1717060.

LRU algorithm is appealing since it is self-organizing with
low cost in tracking history data. When a request arrives, if
the requested data can be found in the cache, we call it a “hit”;
otherwise, we call it a “miss”. When a miss occurs and the
cache is full, LRU moves the item or items that have not been
requested for the longest time (least recently used) out of the
cache to make room for the newly requested one.

Due to the importance of LRU caching, we derive new, easy-
to-compute and accurate asymptotic results for the miss ratios
(a.k.a. miss probabilities) of multiple flows correlated over
time under a large class of truncated heavy-tailed popularity
distributions. For example, we can address a generalized Zipf’s
distribution with requests modulated by a finite-state Markov
chain. The introduced correlations capture the dynamics when
the requests have time-varying popularity distributions. Al-
though there have been extensive efforts to characterize the
miss ratios of LRU caching systems [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], most of them either focus
on independent requests or a single flow with equal data item
sizes. We develop a framework for multiple competing flows to
jointly address different factors in the same model, including,
e.g., time correlations, a large class of (truncated) heavy-tailed
popularity distributions, and variable data item sizes.

We resort to asymptotic analysis, since it gives explicit
results and provides direct insights based on the popularity
distributions. Existing works often assume a Zipf’s distri-
bution (i.e. pi = c/iα) and treat the index α > 1 and
0 < α < 1 separately. Consequently, the asymptotic result
is not accurate around the critical point α ≈ 1. In contrast,
we derive a uniform result that coherently covers both cases
with a smooth transition. More importantly, it significantly
improves the accuracy in numerical computations when α ≈ 1,
and generalizes beyond Zipf’s distributions, e.g., to regularly
varying and heavy-tailed Weibull distributions. Notably, nu-
merous empirical measurements have shown that the data
popularity distributions often follow a Zipf’s distribution, e.g.,
α ∈ (0.6, 0.8) in web caching systems [22] and α ∈ (0.2, 1.2)
at the block I/O level [23]; other reports also exist [5]. These
observations strongly motivate our analysis for α ≈ 1.

In addition to asymptotic analysis, another commonly used
technique in analyzing miss ratios is based on the characteristic
time approximation [16], [24]. Compared to this approach,
our asymptotic result is explicit, since it directly exploits the
critical properties of the distribution and the truncated support
region. Thus, it avoids the numerical computations required by
the characteristic time approximation. Interestingly, our result



implies a new form of the characteristic time approximation
for time-dependent competing requests, which can be proved
asymptotically for large cache sizes under certain conditions.
Related work
Under independent reference model (IRM), the miss proba-
bility of LRU caching has been extensively studied. When
cache sizes are relatively small, the miss ratio can be explicitly
calculated [12], [13], [14], [15]. For large cache sizes, several
approaches have been adopted, such as the commonly used
characteristic time approximation [16], [24] and mean field
approximations [17], [18], [19]. For some specific popular-
ity distributions (e.g., Zipf’s and Weibull distributions), the
asymptotic miss ratio can be explicitly expressed. The studies
on a single flow of independent requests following a Zipf’s
distribution with α > 1 and 0 < α < 1 are investigated in [20]
and [21], respectively. For these two cases, a unified form for
Zipf’s distributions with α > 0, α 6= 1 is proposed in [25]. The
asymptotic miss ratios for Weibull distributions are studied in
[26]. For multiple flows, whether caching systems should use
resource pooling or separation is investigated in [27].

For correlated requests, a few approximations for miss ratios
have been derived [28], [29], [30], which, however, incur
a high computation cost. For Zipf’s law with α > 1, the
asymptotic miss ratios can be explicitly expressed [31], [32],
but the estimation is not accurate for α ≈ 1 and does not
address multiple competing flows. A fluid limit for general
request processes is derived [33], whose asymptotic result for
Zipf’s law agrees with [31], [32]. Due to the lack of a general
analytic framework, we propose a unified approach to study
the asymptotic miss ratio for multiple dependent competing
flows for a large class of (truncated) heavy tailed distributions.
Summary of contributions
(1) We derive new, easy-to-compute and accurate asymptotic
results for the miss probabilities of multiple flows with de-
pendent requests served on a common LRU cache. Compared
with existing asymptotic analyses [32], [31], our result is able
to analyze generalized Zipf’s popularity distributions regularly
varying with α > 1 and 0 < α < 1 in a unified model and is
more accurate for α ≈ 1 with small support regions.
(2) We extend the existing works on Zipf’s popularity distribu-
tions [31], [32] to a broad class of heavy-tailed distributions,
including regularly varying and heavy-tailed Weibull distri-
butions with time correlations. In addition, we prove a new
form of the characteristic time approximation for dependent
competing requests under certain conditions.
(3) We conduct extensive numerical simulations to verify the
theoretical results. All results show a good match.

II. MODEL DESCRIPTION

Consider K flows of dependent requests sharing a common
LRU cache. To model correlations of the requests, define
{Πt}t∈R as a stationary and ergodic modulating process with
finitely many states {1, 2, · · · ,M} and stationary distribution
πm = P[Πt = m]. Data popularities and request rates vary
in different states. Assume that the arrivals of flow k in
state m follow a Poisson process with rate λk,m, 1 ≤ k ≤

K, 1 ≤ m ≤ M . The requests of the aggregated flow arrive
at time points {τn,−∞ < n < ∞}. For simplicity, we use
Πn ≡ Πτn to denote the state at time τn. Let In denote the
index of the flow for the request arrived at τn. The event
{In = k} represents that the request at τn is from flow k.
We have P[In = k|Πn = m] = λk,m/

∑K
i=1 λi,m. Let data

Fig. 1. Data items overlap between two flows
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distinct. However, different data sets can have overlap. We
use d(k)
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(g)
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(g)
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data item. For example, in Fig. 1, we illustrate two overlapped
data sets with common data items d(1)

1 ≡ d
(2)
2 , d(1)
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(2)
3

and d(1)
7 ≡ d(2)

5 . Let Rn be the data item requested at τn. The
event {I0 = k,R0 = d

(k)
i } represents that the request at τn is

from flow k to fetch data item d
(k)
i . Note that {Rn = d

(k)
i }

and {Rn = d
(g)
j } are the same event if we have d(k)

i ≡ d
(g)
j .

Define the popularities

P
[
R0 = d

(k)
i

∣∣Π0 = m
]

= p
(k,m)
i , (1)

P
[
R0 = d

(k)
i

∣∣I0 = k,Π0 = m
]

= q
(k,m)
i . (2)

Let νk,m , P[I0 = k|Π0 = m]. We have

p
(k,m)
i =

K∑
j=1

νj,mP
[
R0 = d

(k)
i

∣∣I0 = j,Π0 = m
]
.

In general, p(k,m)
i can be very different from q

(k,m)
i , since

some data items can be requested by multiple flows, as shown
in Fig. 1.

Let πk,m = P[Π0 = m|I0 = k], q(k)
i =

∑M
m=1 πk,mq

(k,m)
i ,

p
(k)
i =

∑M
m=1 πmp

(k,m)
i . In DSk, assume the data items d(k)

i

are sorted such that the sequence p(k)
i is non-increasing with

respect to i. Note that q(k)
i is not necessarily non-increasing

by this ordering. Now, for flow k, we introduce two functions
(Ψk(·),Θk(·)), both defined in a neighborhood of infinity. For
any ζ > 1 and (Ψk(·),Θk(·)) independent of ζ, we investigate
how the following functional relationship impacts the miss
ratio, by keeping Nk = ζy and letting y →∞,

Nk∑
i=y

q
(k)
i ∼ Ψk

((
p(k)
y

)−1
)

+ Θk(Nk). (3)



Note that (3) contains two additively separable terms, which
holds for all ζ > 1. The notation g(x) ∼ h(x) means
limx→∞ g(x)/h(x) = 1.

Specifically, we consider a class of distributions that satisfy

lim
n→∞

q(k)
n /q

(k)
n+1 = 1, (4)

and

Ψk(x) ∼ x−βk lk(x), βk 6= 0, (5)

where lk(x) is slowly varying [34]. A function lk(x) : R+ →
R+ is slowly varying if for any λ > 0, lk(λx)/lk(x) → 1 as
x → ∞; and Ψk(x) = x−βk lk(x) is called regularly varying
of index −βk, where βk can be even negative. A large class of
heavy-tailed distributions satisfy (4) and (5), e.g., heavy-tailed
Weibull distributions q(k)

i ∼ d exp
(
−ciξ

)
with c, d > 0, 0 <

ξ < 1 and regularly varying distributions q(k)
i ∼ l(i)/iα, α >

0, α 6= 1 with l(i) being slowly varying. Additionally, for ε >
0, 1 ≤ m ≤ M and β∗ = max1≤k≤K{|βk|}, the modulating
process is assumed to satisfy, as n→∞,

P

[∣∣∣∣∣
n∑
i=1

1{Πi = m} − πmn

∣∣∣∣∣ > εn

]
= o(n−β

∗
), (6)

where g(n) = o(h(n)) means limn→∞ g(n)/h(n) = 0.
LRU is equivalent to the move-to-front (MTF) policy [35],

[36], [20], [31], which sorts the data items in the increasing
order of their last access times. Each time a request is made,
the requested data item is moved to the first position of the list
and all the items that were in front of it increase their positions
by one. The move-to-front (MTF) policy has the same miss
probability as a LRU cache. Thus, we can define the miss ratio
of a LRU by the searching cost of MTF.

Definition 1. Define Cn to be the summation of the sizes for
all the data items in the sorted list under MTF that are in front
of the position of the data item corresponding to the request
Rn made at time τn.

If the cache capacity is x, a cache miss under LRU policy,
which is equivalent for MTF, can be denoted by {Cn > x}. If
the data items are unit-sized, i.e. s(k)

i ≡ 1 for all k, i, the event
{Cn > x} means the position of the requested data item in
the list is larger than x under MTF. When the system reaches
its stationary, we only need to consider the miss probability
at time τ0 [31].

III. MAIN RESULTS

For the K flows sharing a cache, denote by DS =⋃K
k=1DSk = {d◦i , i = 1, 2, · · · , N} the set of data items

requested by the entirety of these flows, with P[R0 = d◦i |Π0 =

m] = p
(◦,m)
i . Let si be the size of data item d◦i and assume

s̄ , supi si < ∞. In general, si can take different values
when the items have various sizes. Define

m(x) =

N∑
i=1

si

(
1−

M∏
m=1

(
1− p(◦,m)

i

)πmx)
, (7)

which is an increasing function with an inverse m←(x).
Assume that, for ε ∈ (0, 1) and a function 0 < δ(x) ≤ 1,

lim
x→∞

m←((1 + εδ(x))x)

m←(x)
= f(ε), lim

ε→0
f(ε) = 1, (8)

lim
x→∞

m((1 + ε)x)

m(x)
= g(ε), lim

ε→0
g(ε) = 1. (9)

In addition, there exist h2 > h1 > 0, h4 > h3 > 0 and x0, for
x > x0,

h1 <
δ(x)

δ(x+ εδ(x))
< h2, h3 <

δ(x− εδ(x))

δ(x)
< h4. (10)

A. Miss ratios of competing flows

For LRU caching with competing flows, the miss ratio of
flow k with dependent requests can be characterized by the
following theorem. Let Γ(β, s) =

∫∞
s
xβ−1e−xdx be the

incomplete gamma function.

Theorem 1. Under the conditions (4) - (10), for Nk =
ζm←(x), ζ > 0, 1 ≤ k ≤ K, as x→∞, we have

P [C0 > x|I0 = k] ∼βkΓ
(
βk,m

←(x)p
(k)
Nk

)
Ψk(m←(x)).

The proof is presented in Section VI.
A large class of heavy-tailed distributions including reg-

ularly varying, Weibull and Zipf’s distributions satisfy the
conditions in Theorem 1. For a special case with a single
flow (K = 1) of correlated requests following a truncated
Zipf’s law (p(1)

i ∼ c/iα, 1 ≤ i ≤ N1), the asymptotic miss
ratios have been derived for α > 1 [31], [32]. Applying
Theorem 1, we can compute the asymptotic result for α > 1
and 0 < α < 1 in a unified form in Corollary 1. More
importantly, it gives more accurate numerical results compared
to [31], [32]. The results for a single flow of independent
requests following Zipf’s law, including [20] (α > 1), [21]
(0 < α < 1) and [25] (α > 0, α 6= 1) can be also covered
by Thoerem 1; see Corollary 1. In addition, Theorem 1 also
characterize the miss ratios for multiple competing flows of
correlated requests with overlapped data items.

In order to explicitly compute m(x), we establish the
following lemma. Let p◦i =

∑M
m=1 πmp

(◦,m)
i , 1 ≤ i ≤ N .

For 1 ≤ k ≤ K, 1 ≤ m ≤M , define

m̄(x) =

N∑
i=1

si

(
1− e−p

◦
i x
)
, (11)

m̄(k)(x) =

Nk∑
i=1

s
(k)
i

(
1− exp

(
−

M∑
m=1

πmνk,mq
(k,m)
i x

))
.

Lemma 1. For K flows sharing a cache without overlapped
data items, under (9), we have, as x→∞,

m(x) ∼ m̄(x) =

K∑
k=1

m̄(k)(x). (12)

The proof is presented in Section VI.
Using Theorem 1 and Lemma 1, we study some special

cases that allow time correlated requests.



Corollary 1. Under condition (6), consider a single flow with
unit-sized items and q

(1)
i ∼ c/iα, i = 1, 2, · · ·N,α > 0, α 6=

1. For any ζ > 0 and N = ζm←(x), we have, as x→∞,

P[C0 > x] ∼ Γ

(
1− 1

α
,
cm←(x)

Nα

)
c1/α

αm←(x)1−1/α
, (13)

where m←(x) is the unique solution of the equation

x =Γ

(
1− 1

α
,
cm←(x)

Nα

)
(cm←(x))1/α

+N(1− e−cm
←(x)/Nα). (14)

In particular, for α > 1, since limx→∞m←(x)/Nα = 0,
equation (13) can be further simplified, at the expense of
accuracy, to

P[C0 > x|I0 = 1] ∼ Γ

(
1− 1

α

)α
c

αxα−1
, (15)

which is the result of Theorem 2 in [31]. In Section IV,
simulations verify that equation (13) is more accurate than
[31], when N is relatively small or α is around 1. By setting
M = 1, Corollary 1 also covers the results for a single flow
of independent requests following Zipf’s law [20], [21], [25].

Proof. Since q(1)
i = p

(1)
i = c/iα, we obtain

N∑
i=x

q
(1)
i ∼

∫ N

x

c

tα
dt =

c

(α− 1)xα−1
− c

(α− 1)Nα−1
,

which implies, Ψ1(x) ∼ c1/αx1/α−1/(α − 1), as x → ∞.
Using Lemma 1, we have

m(x) ∼
N∑
i=1

(
1− e−cx/i

α
)
∼
∫ N

1

(
1− e−cx/t

α
)
dt

∼ Γ

(
1− 1

α
, q

(1)
N x

)
(cx)

1/α
+N

(
1− e−q

(1)
N x
)
.

Then, applying Theorem 1, we complete the proof.

Corollary 2. Under condition (6), consider K flows of de-
pendent requests without overlapped data items. For q(k,m)

i =
ck,m/i

αk,m , αk,m > 0, αk,m 6= 1, 1 ≤ i ≤ Nk, 1 ≤
k ≤ K, 1 ≤ m ≤ M , let α̃k = min1≤m≤M αk,m,
Sk = {m : αm,k = α̃k}, c̃k =

∑
m∈Sk πk,mck,m and

ν̃k =
∑
m∈Sk πmνk,mck,m/c̃k 1 ≤ k ≤ K. Assume that, for

each 1 ≤ k ≤ K, the data items of flow k have an identical
size s(k), i.e. s(k)

i = s(k), 1 ≤ i ≤ Nk. Then, for any ζk > 0
and Nk = ζkm

←(x), we have, as x→∞,

P[C0 > x|I0 = k]

∼ Γ

(
1− 1

α̃k
,
c̃kν̃k

N α̃k
k

m←(x)

)
c̃
1/α̃k
k

α̃k(ν̃km←(x))1−1/α̃k
, (16)

where m←(x) is the unique solution of

x =

K∑
k=1

Γ

(
1− 1

α̃k
,
c̃kν̃k

N α̃k
k

m←(x)

)
s(k) (c̃kν̃km

←(x))
1/α̃k

+

K∑
k=1

s(k)Nk

(
1− exp

(
− c̃kν̃k
N α̃k
k

m←(x)

))
.

Proof. Since q(k,m)
i = ck,m/i

αk,m , we have

q
(k)
i =

M∑
m=1

πk,mck,m
iαk,m

∼
∑
m∈Sk

πk,mck,m
iα̃k

=
c̃k
iα̃k

and p
(k)
i =

∑M
m=1 πmνk,mq

(k,m)
i ∼ ν̃kq

(k)
i . Using the same

approach as in the proof of Corollary 1, we obtain, as x→∞,

Ψk(x) ∼
c̃
1/α̃k
k (ν̃kx)

1/α̃k−1

α̃k − 1
(17)

and

m(x) ∼
K∑
k=1

Γ

(
1− 1

α̃k
, q

(k)
Nk
ν̃kx

)
s(k) (c̃kν̃kx)

1/α̃k

+

K∑
k=1

s(k)Nk

(
1− e−q

(k)
Nk
ν̃kx

)
. (18)

Combining (17), (18) and Theorem 1 completes the proof.

For flows with overlapped data items, we can decompose
them into sub-flows that have no overlapped data. Now, we use
an example to illustrate this method. Let Πn be a finite state
Markov chain with the stationary distribution (π1, π2, · · ·πM ).
Let Aj = {d(Aj)

1 , d
(Aj)
2 , · · · d(Aj)

N }, 1 ≤ j ≤ 3, be three dis-
joint sets of data items. Let DS1 = A1∪A3, DS2 = A2∪A3,
i.e., A3 is the set of overlapped data items of flow 1 and
flow 2. Let q(Aj ,m)

i , P[R0 = d
(Aj)
i |R0 ∈ Aj ,Π0 = m] =

cj,m/i
αj,m . Define r

(A3)
1 = P[R0 ∈ A3|I0 = 1]. Similarly,

we can define r
(A1)
1 , r

(A2)
2 , r

(A3)
2 with r

(A1)
1 + r

(A3)
1 = 1,

r
(A2)
2 + r

(A3)
2 = 1. The miss ratio of flow k, k = 1, 2, is

P[C0 > x|I0 = k] =r
(Ak)
k P[C0 > x|R0 ∈ Ak]

+ r
(A3)
k P[C0 > x|R0 ∈ A3], (19)

where P[C0 > x|R0 ∈ Aj ], 1 ≤ j ≤ 3, can be directly
obtained from Corollary 2 if we view A1, A2, A3 as the data
sets of three flows without overlapped data items.

B. The Characteristic Time Approximation

In this section, we extend the characteristic time approxi-
mation from a single flow of independent requests to multiple
competing flows with dependent requests. Define

PCT [C0 > x|I0 = k] =

Nk∑
i=1

q
(k)
i e−p

(k)
i m̄←(x), (20)

where m̄←(x) is the inverse of m̄(x) defined in (11). Note
that, by letting M = 1, q(k)

i = q
(1,k)
i , p(k)

i = p
(1,k)
i for

all i, equation (20) degrades to the characteristic time ap-
proximation for independent requests presented in [37], [16].
Moreover, we verify the characteristic time approximation (20)
by the following theorem.

Theorem 2. Under the assumptions in Theorem 1, we have,
as x→∞,

P [C0 > x|I0 = k] ∼ PCT [C0 > x|I0 = k] . (21)

The proof is presented in Section VI.



IV. EXPERIMENTS

In this section, we conduct simulation experiments using
C++ to verify the theoretical results. Experiment 1 shows that
our asymptotic results are more accurate than the existing ones
for a flow of correlated requests following a Zipf’s distribution
when α is close to 1 or the support region is relatively small.
Experiment 2 validates Theorem 1 using multiple flows of
requests with regularly varying popularity distributions that
are modulated by a Markov chain. Experiment 3 investigates
2 flows of dependent requests with overlapped data items.

Experiment 1. We conduct two simulations for a single
flow of correlated requests to show that Corollay 1 (labeled
as “theoretical 1”) is more accurate than Theorem 2 of [31]
(labeled as “theoretical 2”). Assume all data items are unit-
sized. Let Πn be a two state ({1,2}) Markov chain with
the transition matrix (0.8, 0.2; 0.6, 0.4). Let q(1,1)

i = c1/i
α,

q
(1,2)
i = c2 exp(−ξi), 1 ≤ i ≤ N . Since exponential distri-

butions decay much faster than Zipf’s distributions, we have
q

(1)
i ∼ π1,1q

(1,1)
i as i→∞. The first simulation studies Zipf’s

distributions with α ≈ 1. First, we set α = 1.1, ξ = 0.6, N =
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Fig. 2. A single flow following Zipf’s law

104, and plot the empirical miss ratios as well as the theoretical
miss ratios by Corollary 1 and [31] in Fig. 2. Then, we choose
α = 0.8 < 1, which is not covered by [31], and repeat
the simulation. The empirical miss ratios are compared with
theoretical ones calculated by Corollary 1. It can be observed
that theoretical results by Corollary 1 match very well with
empirical ones for both α > 1 and 0 < α < 1. In contrast,
[31] cannot provide accurate estimations when α = 1.1. In
the second simulation, we study a relatively small support
region by setting α = 2.0, ξ = 0.6, N = 103. Corollary 1 also
gives more accurate approximations than [31]. For independent
requests, [25] proposes an accurate approximation even when
α ≈ 1, but it does not cover correlated requests.

Experiment 2. To validate Theorem 1, we consider 4
flows of dependent requests beyond Zipf’s distribution. As-
sume these flows have unit-sized data without overlap.
Let Πn be a two state Markov chain with the transition
matrix (0.8, 0.2; 0.6, 0.4). Let q

(k,1)
i = ck,1 log(i)/iαk,1 ,

q
(k,2)
i = ck,2 exp(−ξk,2i), 1 ≤ i ≤ 106, 1 ≤ k ≤ 4.

Since exponential distributions decay much faster, we have
q

(k)
i ∼ πk,1q

(k,1)
i as i → ∞. Let (α1,1, α2,1α3,1α4,1) =

(1.6, 1.8, 2.0, 2.4), (ν1,1, ν2,1, ν3,1, ν4,1) = (0.3, 0.3, 0.2, 0.2),

(ν1,2, ν2,2, ν3,2, ν4,1) = (0.4, 0.3, 0.2, 0.1) and ξk,2 = 0.6,
1 ≤ k ≤ 4. For each flow, we compare the empirical miss
ratios with theoretical ones calculated by Theorem 1. Note

Fig. 3. Multiple dependent flows beyond Zipf’s law

that Ψk(m←(x)) can be computed by numerical methods (e.g.,
binary search) based on (3) and (7). We plot the theoretical
miss ratios and the empirical ones in Fig. 3. The perfect match
validates Theorem 1.

Experiment 3. Consider 2 flows of dependent requests with
overlapped data that have been described in section III-A. We
also use the notations introduced therein. Let Πn be a two state
Markov chain with transition matrix (0.5, 0.5; 0.25, 0.75). Let
Nj = 104, αj,1 = 0.8, αj,2 = 2, 1 ≤ j ≤ 3, and ν1,1 = 0.2,
ν2,1 = 0.8, ν1,2 = ν2,2 = 0.5, r(A3)

1 = r
(A3)
2 = 0.2 and

r
(A1)
1 = r

(A2)
2 = 0.8. In Fig. 4, we compare the theoretical

Fig. 4. Two dependent flows with overlapped data

miss ratios computed by (19) and the empirical ones obtained
from simulations. It can be observed that the theoretical results
match very well with the empirical ones.

V. CONCLUSION

We develop a unified framework to analyze the asymptotic
miss ratios for multiple flows of dependent data item requests
that share a common LRU cache. The analysis jointly con-
siders time correlations, data popularities, varying item sizes,
different request rates and even overlapped data items. The
result is derived for a broad class of (truncated) heavy-tailed
popularity distributions, e.g., regularly varying and heavy-
tailed Weibull distributions. Existing asymptotic results often
treat a Zipf’s distribution of α > 1 and 0 < α < 1
separately; we provide a uniform result. As a result, it is more



accurate when the index α is around 1 or the support region is
relatively small. Extensive simulation experiments validate our
theoretical results. The high accuracy, low computation cost
and applicability for a large class of popularity distributions
make our analytical results useful in understanding LRU
caching systems.

VI. PROOFS

In order to prove Theorem 1, we need to establish a lemma.
Let M(n) denote the total size of all the distinct data items
that have been requested on time points {τ−1, τ−2, · · · , τ−n}.
Define M←(x) = min{n : M(n) ≥ x} to be the inverse
function of M(n) .

Lemma 2. For ε(x) = εδ(x) as in (8) and s̄ = supi si <∞,
we obtain

P [M(m←(x)) ≥ (1 + ε(x))x]

≤ e−(1−ε)(ε(x))2x/4s̄ + o(m←(x)−β
∗
). (22)

Proof. Define a Bernoulli random variable X
(n)
i with

X
(n)
i = 1 if item d◦i has been requested in Rn =

{R−1, R−2, · · · , R−n} and X
(n)
i = 0 otherwise. Then, we

have M(n) =
∑∞
i=1 siX

(n)
i .

Now, conditional on the modulating process Jn =
(Π−1,Π−2, · · · ,Π−n), we can count the number of requests
in Rn that observe the modulating process in state m, 1 ≤
m ≤ M . For each state m of the modulating process, define
a random variable nm = |{j : Π−j = m, 1 ≤ j ≤ n}|. Let
pJni (n) = P

[
X

(n)
i = 1|Jn

]
and pi(n) = P[X

(n)
i = 1] =

E
[
pJni (n)

]
. Then, we have

pJni (n) = 1−

(
M∏
m=1

(
1− p(◦,m)

i

)nm)
. (23)

Define E+
λ =

⋂
1≤m≤M{nm < (1 + λ)πmn}. By Markov’s

inequality, for θ > 0, we obtain, using independence of X(n)
i ’s

conditional on Jn, and E
[
eθsiX

(n)
i

∣∣Jn] = pJni (n)eθsi + 1−

pJni (n) = pJni (n)
(
eθsi − 1

)
+ 1 ≤ ep

Jn
i (n)(eθsi−1),

P [M(n) ≥ (1 + ε(m(n)))m(n)]

≤ P
[
M(n) ≥ (1 + ε(m(n)))m(n)|E+

λ

]
+ P

[(
E+
λ

)C]
≤ E

[
ΠN
i=1E

[
eθsiX

(n)
i

∣∣∣Jn] ∣∣∣E+
λ

]/
e(1+ε(m(n)))θm(n)

+ P
[(
E+
λ

)C]
≤ E

[
e
∑N
i=1 p

Jn
i (n)(eθsi−1)

∣∣∣E+
λ

]/
eθ(1+ε(m(n)))m(n)

+ P
[(
E+
λ

)C]
.

Using ex − 1 ≤ (1 + ξ)x, 0 < x < 2ξ/eξ, ξ > 0, we obtain
eθsi − 1 ≤ (1 + ε(m(n))/2)θsi for θ = ε(m(n))/(2s̄).

As a result, we have,

P [M(n) ≥ (1 + ε(m(n)))m(n)]

≤ E
[
e(1+ε(m(n))/2)θ

∑N
i=1 p

Jn
i (n)si

∣∣∣E+
λ

]/
eθ(1+ε(m(n)))m(n)

+ P
[(
E+
λ

)C]
≤ exp

(
−ε(m(n))2

4s̄
m(n)

+

(
ε(m(n))

2s̄
+
ε(m(n))2

4s̄

)
(m((1 + λ)n)−m(n))

)
+ P

[(
E+
λ

)C]
. (24)

Recalling (9), we can choose λ small enough such that, for
large n,

m((1 + λ)n)

m(n)
≤ 1 +

ε2δ(m(n))

3
.

Therefore, for sufficiently large n, equation (24) can be further
upper bounded by

P [M(n) ≥ (1 + ε(m(n)))m(n)]

≤ exp

(
−(1− ε)ε(m(n))2

4s̄
m(n)

)
+ o(n−β

∗
),

implying (22) by replacing n with m←(x).

Proof of Theorem 1. First, we derive a representation for the
miss probability P[C0 > x|I0 = k]. We find the last request
before R0 such that the requested date item is the same with
R0, and denote it by R−σ . Let M(n) denote the total size of
all the distinct data items that have been requested on the time
interval [τ−n, τ−1]. Define the inverse function of M(n) to be
M←(x) = min{n : M(n) ≥ x}. We claim that

{C0 > x} = {σ > M←(x)}. (25)

If the event {σ > M←(x)} occurs, then we have M(σ) > x,
which means, under MTF, the total size of distinct items listed
in front of the requested item R0 is larger than the cache size
x. This implies {σ > M←(x)} ⊆ {C0 > x}. If {C0 > x}
occurs, then there must be enough distinct data items that have
been requested on (τ−σ, 0) so that the data item R−σ is moved
out of the cache. Therefore, we obtain {C0 > x} ⊆ {σ >
M←(x)}, which proves (25) and implies

P[C0 > x|I0 = k] = P[σ > M←(x)|I0 = k]. (26)

Given the cache size x, M←(x) is a random variable. We
estimate M←(x) by a deterministic function m←(x), to derive
the explicit form of the asymptotic miss ratio.

From (26), we take two steps to calculate the miss ratio.
The first step is to show, for Nk = ζn, ζ > 0, as n→∞,

P[σ > n|I0 = k] ∼ βkΓ
(
βk, np

(k)
Nk

)
Ψk(n). (27)

The second step is to relate M←(x) to m←(x) as x→∞.



Assume that Ψk(x) is eventually absolutely continuous and
strictly decreasing, by Proposition 1.5.8 and Proposition 1.5.10
of [34], we can construct such a function, for x > x0,

Ψ∗k(x) =

{
−βk

∫ x
x0
s−βk−1l(s)ds if βk < 0,

βk
∫∞
x
s−βk−1l(s)ds if βk > 0.

(28)

For x0 large enough, we have, as y →∞,
Nk∑
i=y

q
(k)
i ∼ Ψk

((
p(k)
y

)−1
)

+ Θk(Nk)

∼ Ψ∗k

((
p(k)
y

)−1
)

+ Θk(Nk). (29)

Therefore, there exists x0 such that, for x > x0, Ψk(x) is
decreasing and has an inverse function. According to (3), for
∀ε ∈ (0, 1), there exists iε such that, for i ≥ iε,

(1− ε)

Nk∑
j=i

q
(k)
j

 ≤ Ψk

((
p

(k)
i

)−1
)

+ Θk(Nk)

≤ (1 + ε)

Nk∑
j=i

q
(k)
j

 . (30)

For iε large enough such that 1/p
(k)
iε

> x0, we have, for i ≥ iε,

Ψ←k

(1− ε)

 ∞∑
j=i

q
(k)
j

−Θk(Nk)

 ≥ (p(k)
i

)−1

≥ Ψ←k

(1 + ε)

 ∞∑
j=i

q
(k)
j

−Θk(Nk)

 . (31)

Step 1: Conditional on the event {R0 = d
(k)
i , I0 = k} and the

modulating process Jn = (Π−1,Π−2, · · · ,Π−n), the requests
R−1, R−2, · · ·R−n are independent, which implies

P
[
σ > n|R0 = d

(k)
i , I0 = k,Jn

]
=

n∏
j=1

P
[
R−j 6= d

(k)
i |R0 = d

(k)
i , I0 = k,Jn

]
=

n∏
j=1

(
1− p(k,Π−j)

i

)
=

M∏
j=1

(
1− p(k,j)

i

)nj
,

where nj =
∑n
i=1 1{Π−i = j}, 1 ≤ j ≤ M . Thus,

unconditional on R0, we obtain, recalling (1) and (2),

P [σ > n|I0 = k]

= E

[
M∑
m=1

πk,mP[σ > n|I0 = k,Π0 = m,Jn]

]

= E

 M∑
m=1

πk,m

Nk∑
i=1

q
(k,m)
i

M∏
j=1

(
1− p(k,j)

i

)nj
= E

Nk∑
i=1

q
(k)
i

M∏
j=1

(
1− p(k,j)

i

)nj . (32)

First, we derive the upper bound of (32),

P [σ > n|I0 = k]

≤ E

Nk∑
i=1

q
(k)
i

M∏
j=1

(
1− p(k,j)

i

)nj
1{nj ≥ (1− ε)πjn}


+ P

[
min

1≤j≤M
nj/πj < 1− ε

]

≤ (1 + ε)
M

Nk∑
i=1

q
(k)
i exp

− M∑
j=1

(1− ε)nπjp(k,j)
i


+ P

[
min

1≤j≤M
nj/πj < 1− ε

]
≤ (1 + ε)

Mexp
(
−(1− ε)np(k)

iε

)
+ (1 + ε)

M
Nk∑

i=iε+1

q
(k)
i exp

(
−(1− ε)np(k)

i

)
+ P

[
min

1≤j≤M
nj/πj < 1− ε

]
, I1 + I2 + I3. (33)

For ε2 ∈ (p
(k)
Nk
, p

(k)
iε1

), large integer n and any integer l with

blog np
(k)
Nk
c , n(p

(k)
Nk

) ≤ l ≤ blog nε2c , n(ε2), we can find
il such that p(k)

il+1 ≤ el/n ≤ p
(k)
il
≤ ε2. For an integer m with

n(p
(k)
Nk

) < m < n(ε2), we have im > in(ε2) > iε1 , and

I2/(1 + ε)
M

=

in(ε2)−1∑
i=iε1+1

+

im∑
i=in(ε2)

+

Nk∑
i=im+1

 q
(k)
i e−(1−ε)np(k)i

≤ e−(1−ε)nε2 +

n(ε2)∑
l=m

il∑
j=il+1+1

q
(k)
j e−(1−ε)el

+

Nk∑
j=im+1

q
(k)
j e−(1−ε)np(k)j

, I21 + I22 + I23.

Using (31), we have, for Qj =
∑∞
i=j q

(k)
i , ∆Qj = Qj−Qj+1,

I23 =

Nk∑
j=im+1

exp

(
− (1− ε)n

Ψ←k ((1− ε)Qj −Θk(Nk))

)
∆Qj .

Since e−1/Ψ←k (u) is decreasing with u, we have, for ∀u ∈
(Qj+1, Qj), exp(−(1− ε)n/(Ψ←k ((1− ε)u−Θk(Nk)))) ≥
exp(−(1− ε)n/(Ψ←k ((1− ε)Qj −Θk(Nk)))), which implies

I23 ≤
∫ Qim

0

exp
(
− (1− ε)n

Ψ←k ((1− ε)u−Θk(Nk))

)
du

≤
∫ em

z(ε)

e−zd

(
Ψk

(
(1− ε)n

z

))
,

where z(ε) = (1 − ε)n/Ψ←k ((1 − ε)QNk − Θk(Nk)). By
Theorem 1.2.1 of [34], (28) and (29), we obtain,

I23/Ψk(n) . (1− ε)−βk
∫ em

z(ε)

βke
−zzβk−1dz. (34)



Using the same approach, I22 can be bounded by

I22/Ψk(n) .
∞∑
k=m

(1 + ε)e−e
k (
ek+1

)βk
<∞. (35)

Recalling the assumption P [|
∑n
i=1 1{Πi = m} − πmn| > εn]

= o(n−β
∗
), ε ∈ (0, 1), 1 ≤ m ≤ M and Ψk(n) & n−β

∗
l(n),

we have I1 = o(Ψk(n)), I3 = o(Ψk(n)) in (33). Combining
(34) and (35), passing ε → 0, n → ∞, and m → ∞, we
obtain

P[σ > n|I0 = k]/Ψk(n)

.
∫ ∞
np

(k)
Nk

βke
−zzβk−1dz = βkΓ(βk, np

(k)
Nk

). (36)

Next, we derive the lower bound. According to the weak
law of large number, for ∀ ε ∈ (0, 1) and 1 ≤ j ≤M , we can
choose n large enough such that P[nj ≤ (1 + ε)πjn] ≥ 1− ε.
P [σ > n|I0 = k] can be bounded as

P [σ > n|I0 = k]

≥ E

Nk∑
i=1

q
(k)
i

M∏
j=1

(
1− p(k,j)

i

)nj
1{nj ≤ (1 + ε)πjn}


≥ (1− ε)M

Nk∑
i=1

q
(k)
i

M∏
j=1

(
1− p(k,j)

i

)(1+ε)πjn

.

Since 1−x ≥ e−(1+ε)x for sufficiently small x, we can choose
iε large enough such that 1− p(k,j)

i ≥ e−(1+ε)p
(k,j)
i for i ≥ iε,

which yields

P [σ > n|I0 = k]

≥ (1− ε)M
Nk∑
i=iε

q
(k)
i

M∏
j=1

exp
(
−(1 + ε)nπjp

(k,j)
i

)

= (1− ε)M
Nk∑
i=iε

q
(k)
i exp

(
−(1 + ε)np

(k)
i

)
.

Using (4), (30), we obtain, for Qi =
∑Nk
j=i q

(k)
j ,

P [σ > n|I0 = k] /(1− ε)M+1

≥
Nk∑
i=iε

q
(k)
i−1exp

(
−(1 + ε)np

(k)
i

)
≥

Nk∑
i=iε

(Qi−1 −Qi) exp
(
− (1 + ε)n

Ψ←k ((1 + ε)Qi −Θk(Nk))

)

≥
∫ Qiε−1

QNk

exp
(
− (1 + ε)n

Ψ←k ((1 + ε)u−Θk(Nk))

)
du,

where the last inequality holds since exp(−1/Ψ←k (x))
is decreasing with x. Choose in > iε such that
Ψ←k ((1 + ε)Qin −Θk(Nk)) = n/W . Using a similar ap-
proach as in deriving (34), we obtain, for z(ε) = (1 +
ε)n/Ψ←k ((1 + ε)QNk −Θk(Nk)),

P [σ > n|I0 = k] /Ψk(n) & (1− ε)M
∫ W

z(ε)

βke
−zzβk−1dz,

implying, by passing ε→ 0, n→∞ and W →∞,

P[σ > n|I0 = k]/Ψk(n)

&
∫ ∞
np

(k)
Nk

βke
−zzβk−1dz = βkΓ

(
βk, np

(k)
Nk

)
. (37)

Combining (36) and (37) yields (27).
Step 2: Using (22), we have, for x1 = m←(x/(1 + ε(x)))

P[M←(x) < x1] ≤ P [M(m←(x/(1 + ε(x)))) ≥ x]

= P
[
M

(
m←

(
x

1 + ε(x)

))
≥
(

(1 + ε(x))x

1 + ε(x)

)]
. (38)

Recalling (10) and δ(x) ≤ 1, we have, for x > x0, ε(x) ≥
h1ε (x/(1 + ε(x))), which implies, using (22) and (38),

P
[
M (x1) ≥

(
1 + h1ε

(
x

1 + ε(x)

))(
x

1 + ε(x)

)]
≤ exp

(
−(1− ε)(h1ε(x/(1 + ε(x))))2x/ (4s̄(1 + ε(x)))

)
+ o((m←(x/(1 + ε(x))))−β

∗
)

≤ exp

(
−h1

2

h2
2

(1− ε)ε(x)2x

4(1 + ε)s̄

)
+ o((m←(x/(1 + ε(x))))−β

∗
). (39)

Combining (22), (26), (27) and (39) yields

P[C0 > x|I0 = k] ≤ P[σ > M←(x),M←(x) ≥ x1|I0 = k]

+ P[M←(x) < x1|I0 = k]

≤ P[σ > m←(x/(1 + ε(x)))] + P[M←(x) < x1]

. βkΓ
(
βk,m

←(x)p
(k)
Nk

)
Ψk (m←(x/(1 + ε(x))))

+ exp

(
−h1

2

h2
2

(1− ε)ε(x)2x

4s̄(1 + ε)

)
+ o((m←(x/(1 + ε(x))))−β

∗
). (40)

Using limx→∞ log (m←(x)) /(δ2(x)x) = 0, (5), (8), and
passing ε→ 0, we obtain,

P[C0 > x|I0 = k] . βkΓ
(
βk,m

←(x)p
(k)
Nk

)
Ψk (m←(x))

+ o (Ψk (m←(x))) . (41)

Similarly, for x2 = m←(x/(1− ε(x))), we have

P[C0 > x|I0 = k] ≥ P[σ > M←(x),M←(x) ≤ x2|I0 = k]

− P[M←(x) > x2|I0 = k],

which implies, by a similar approach as in deriving (41),

P[C0 > x|I0 = k] & βkΓ
(
βk,m

←(x)p
(k)
Nk

)
Ψk (m←(x))

− o (Ψk (m←(x))) . (42)

Moreover, for ∀ ζ > 0, Nk = ζn, we have 0 < np
(k)
Nk

< 2/ζ,
which indicates

lim inf
n→∞

βkΓ(βk, np
(k)
Nk

) > βkΓ (βk, 2/ζ) > 0.

Therefore, combining (41) and (42) finishes the proof.



Proof of Lemma 1. Using 1− x ≤ e−x, we have

m̄(x) =

N∑
i=1

si

(
1−

M∏
m=1

exp
(
−πmp(◦,m)

i x
))
≤ m(x).

Moreover, for ε ∈ (0, 1), there exists xε such that, for 0 ≤
x ≤ xε, 1− x ≥ e−(1+ε)x. Choosing iε such that p(◦,m)

i ≤ x0

for any i > iε, 1 ≤ m ≤M , we have

m̄(x) =

iε∑
i=1

si

(
1− exp

(
−

M∑
m=1

πmp
(◦,m)
i x

))

+

N∑
i=iε+1

si

(
1− exp

(
−

M∑
m=1

πmp
(◦,m)
i x

))

≥ iεs̄+

N∑
i=iε+1

si

(
1−

M∏
m=1

(
1− p(◦,m)

i

)πmx)
≥ iεs̄+m((1 + ε)x),

which implies, by (9), m̄(x) & m(x) as x → ∞. Combining
the upper bound and the lower bound, we obtain, as x→∞,
m(x) ∼ m̄(x). Moreover, since there are no overlapped data
items, we have m(x) ∼ m̄(x) =

∑K
k=1 m̄

(k)(x).

Proof of Theorem 2. Using a similar approach as in the proof
of Theorem 1 that derives the lower bound and upper bound
of P[σ > n|I0 = k], we have, as x→∞,

PCT [C0 > x|I0 = k] ∼ βkΓ
(
βk, m̄

←(x)p
(k)
Nk

)
Ψk(m̄←(x)).

Combining this with (5) and applying Theorem 1, Lemma 1,
we can prove Theorem 2.
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